Answer:
Explanation:
The formula for time period of a pendulum is given as follows :
T = 2π
l is length of pendulum and g is acceleration due to gravity .
So time period of pendulum is not dependent on the mass of the pendulum . If time period is same and length is also the same then acceleration due to gravity will also be the same . Hence the acceleration due to gravity at distant planet will be same as that on the earth.
Answer:
Vr = 20 [km/h]
Explanation:
In order to solve this problem, we have to add the relative velocities. We must remember that velocity is a vector, therefore it has magnitude and direction. We will take the sea as the reference measurement level.
Let's take the direction of the ship as positive. Therefore the boy moves in the opposite direction (Negative) to the reference level (the sea).
![V_{r}=30-10\\V_{r}=20 [km/h]](https://tex.z-dn.net/?f=V_%7Br%7D%3D30-10%5C%5CV_%7Br%7D%3D20%20%5Bkm%2Fh%5D)
<h2>Answer: Francium
</h2>
Let's start by explaining that electronegativity is a term coined by Linus Pauling and is determined by the <em>ability of an atom of a certain element to attract electrons when chemically combined with another atom.
</em>
So, the more electronegative an element is, the more electrons it will attract.
It should be noted that this value can not be measured directly by experiments, but it can be determined indirectly by means of calculations from other atomic or molecular properties of the element. That is why the scale created by Pauling is an arbitrary scale, where the maximum value of electronegativity is 4, assigned to Fluorine (F) and the <u>lowest is 0.7, assigned to Francium (Fr).</u>
Answer:
A boat travels for three hours with a... A boat travels for three hours with a current of 3 mph and then returns the same distance against the current in four hours. What is the boat's speed in still water?
Explanation:
Explanation:
We have,
Mass of a baseball is 0.147 kg
Initial velocity of the baseball is 44.5 m/s
The ball is moved in the opposite direction with a velocity of 55.5 m/s
It is required to find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Change in momentum,

Impulse = 14.7 kg-m/s
Therefore, the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat is 14.7 kg-m/s