If the rock is just sitting there and you want to SLIDE it, then you have to push it with a force of at least
(251 kg) x (9.8 m/s²) x (μ) =
(2,459 Newtons) x (the coefficient of static friction on that surface)
Answer: The kinetic energy in physics can be defined as the energy possessed by the body when it is in motion relatively to the other bodies. This energy depends on the mass of the body and the square of the velocity. Its measurable unit is in Joules.
Answer and Explanation:
Given data:
The electric field is
E
=
1000
N
/
C
The initial kinetic energy of the ejected electrons is
k
=
3
e
V
=
(
3
×
1.6
×
10
−
19
)
J
The expression for the conservation of energy of the electrons is given by
k
=
U
p
k
=
e
V
Here
U
p
=
e
V
is the potential energy of the electron
Here
V
=
E
d
is the electric potential in electric field
Here
e
=
1.6
×
10
−
19
C
is the charge of the electon
Substituting the values in the above equation as,
k
=
q
V
k
=
e
(
E
d
)
(
3
×
1.6
×
10
−
19
J
)
=
(
1.6
×
10
−
19
C
)
(
1000
N
/
C
)
×
d
d
=
0.003
m
d
=
3
m
m
Explanation:
The amount of power change if less work is done in more time"then the amount of power will decrease".
<u>Option: B</u>
<u>Explanation:</u>
The rate of performing any work or activity by transferring amount of energy per unit time is understood as power. The unit of power is watt
Here this equation showcase that power is directly proportional to the work but dependent upon time as time is inversely proportional to the power i.e as time increases power decreases and vice versa.
This can be understood from an instance, on moving a load up a flight of stairs, the similar amount of work is done, no matter how heavy but when the work is done in a shorter period of time more power is required.
In series circuit, Req = R₁ + R₂ + R₃ + ···
In parallel circuit, 
<h3>Q7.</h3>
total resistance in the upper branch = R₂ + R₃ = R₂ + 2


R₂ + 2 = 12
R₂ = 10Ω
<h3>Q8.</h3>


Req = 1.7Ω