Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
Answer:
factual evidence of customer-service levels.
better understanding of cross-functional performance.
enhanced alignment of operations with strategy.
evidence-based determination of process improvement priorities.
detection of performance trends.
better understanding of the capability range of a process.
Answer: The average speed is 27,24 mph (exactly 1008/37 mph)
Explanation:
This is solved using a three rule: We know the speeds and the distances, what we can obtain from it is the time used. It is done like this:
1h--->18mi
X ---->20 mi, then X=20mi*1h/18mi= 10/9 h=1,111 h
1h--->56mi
X ---->20 mi, then X=20mi*1h/56mi= 5/14 h=0,35714 h
Then the average speed is calculated by taking into account that it was traveled 40mi and the time used was 185/126 h=1,468 h and since speed is distance over time we get the answer. Average speed= 40mi/(185/126 h)=1008/37 mph=27,24 mph.
The equilibrium condition allows finding the result for the force that the chair exerts on the student is:
- The reaction force that the chair exerts on the student's support is equal to the student's weight.
Newton's second law gives the relationship between force, mass and acceleration of bodies, in the special case that the acceleration is is zero equilibrium condition.
∑ F = 0
Where F is the external force.
The free body diagram is a diagram of the forces on bodies without the details of the shape of the body, in the attached we can see a diagram of the forces.
Let's analyze the force on the chair.
Let's analyze the forces on the student.
In conclusion using the equilibrium condition we can find the result for the force that the chair exerts on the student is:
- The reaction force that the chair exerts on the student's support is equal to the student's weight.
Learn more here: brainly.com/question/18117041
Answer:
Acceleration, 
Explanation:
Initial speed of the skater, u = 8.4 m/s
Final speed of the skater, v = 6.5 m/s
It hits a 5.7 m wide patch of rough ice, s = 5.7 m
We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :




So, the acceleration on the rough ice
and negative sign shows deceleration.