1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatuchka [14]
3 years ago
11

What equation can be used to calculate either wavelength, frequency or speed?

Physics
1 answer:
lakkis [162]3 years ago
7 0

Answer:

speed = wavelength * frequency

Explanation:

Thenks and mark me brainliest :)

You might be interested in
Two transverse waves travel along the same taut string. Wave 1 is described by y1(x, t) = A sin(kx - ωt), while wave 2 is descri
Vadim26 [7]

Answer:

6) Wave 1 travels in the positive x-direction, while wave 2 travels in the negative x-direction.

Explanation:

What matters is the part kx \pm \omega t, the other parts of the equation don't affect time and space variations. We know that when the sign is - the wave propagates to the positive direction while when the sign is + the wave propagates to the negative direction, but <em>here is an explanation</em> of this:

For both cases, + and -, after a certain time \delta t (\delta t >0), the displacement <em>y</em> of the wave will be determined by the kx\pm\omega (t+\delta t) term. For simplicity, if we imagine we are looking at the origin (x=0), this will be simply \pm \omega (t+\delta t).

To know which side, right or left of the origin, would go through the origin after a time \delta t (and thus know the direction of propagation) we have to see how we can achieve that same displacement <em>y</em> not by a time variation but by a space variation \delta x (we would be looking where in space is what we would have in the future in time). The term would be then k(x+\delta x)\pm\omega t, which at the origin is k \delta x \pm \omega t. This would mean that, when the original equation has kx+\omega t, we must have that \delta x>0 for k\delta x+\omega t to be equal to kx+\omega\delta t, and when the original equation has kx-\omega t, we must have that \delta x for k\delta x-\omega t to be equal to kx-\omega \delta t

<em>Note that their values don't matter, although they are a very small variation (we have to be careful since all this is inside a sin function), what matters is if they are positive or negative and as such what is possible or not .</em>

<em />

In conclusion, when kx+\omega t, the part of the wave on the positive side (\delta x>0) is the one that will go through the origin, so the wave is going in the negative direction, and viceversa.

4 0
3 years ago
Explain the importance of measurement<br>Physics.<br><br>​
KiRa [710]

Answer:

Measurements are an important part of comparing things, as they provide the basis on comparing objects to other objects. Measurements allow us to recognize three hours and see how it's shorter than five hours, without having to observe the hours passing by themselves.

7 0
3 years ago
HELP ASAP PLEASEEEEEEEEEEEE
ira [324]
It's the second graph!
it's the only one with a negative gradient.
so the temperature of the ball will fall in water as it looses its heat.

activate windows,:-P
8 0
4 years ago
If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
vovikov84 [41]

Complete Question

In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?

Answer:

The speed of the helicopter is u  =  7.73 \  m/s

Explanation:

From the question we are told that

   The height at which he let go of the brief case is  h =  130 m  

    The  time taken before the the brief case hits the water is  t =  6 s

Generally the initial speed of the  briefcase (Which also the speed of the helicopter )before the man let go of it is  mathematically evaluated using kinematic equation as

      s = h+  u t +  0.5 gt^2

Here s  is the distance covered by the bag at sea level which is zero

      0 = 130+  u * (6) +  0.5  *  (-9.8) * (6)^2

=>    0 = 130+  u * (6) +  0.5  *  (-9.8) * (6)^2

=>   u  =  \frac{-130 +  (0.5 * 9.8 *  6^2) }{6}

=>   u  =  7.73 \  m/s

     

7 0
3 years ago
Beating a carpet with a carpet beater.
prisoha [69]
I would say a short person with muscles considering they are closer to the ground, but they may not be able to build up as much force in such a short time compared to the tall person.
8 0
3 years ago
Other questions:
  • A magnetic field of 0.080 T is in the y-direction. The velocity of wire segment S has a magnitude of 78 m/s and components of 18
    14·1 answer
  • the guage pressure in a car tire is 30.0 psi when the air temperature is 0 C as the day warms up and brighten sun shines What is
    11·1 answer
  • What type of wave shows wave-particle duality? Mechanical or Electromagnetic?
    11·2 answers
  • A loaded flatbottom barge floats in fresh wa-ter. The bottom of the barge is 4.09 m belowthe water line. When the barge is empty
    11·1 answer
  • How original were Newton’s contributions to science? (In what ways did Newton depend on the mechanical view?)
    12·1 answer
  • Which of the following describes the wave speed of all waves?
    8·1 answer
  • What should be angle between force and displacement to get the maximum work​
    10·1 answer
  • Choose the correct definitions of speed, velocity, and acceleration. Check all that apply. Acceleration tells us in which direct
    8·1 answer
  • What does it mean when the orbital eccentricity of a planet is close to 1?
    12·2 answers
  • Uncertainty in 21.0 C is<br> A. 0.1<br> B. 0.2<br> C. 0.05
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!