<span>What are some examples of monomers and oligomers?
</span>Organic molecules, such as proteins, carbohydrates, lipids and nucleic acids, are made of simple subunits called monomers. <span>Plasticizers are </span>oligomeric esters widely used to soften thermoplastics such as PVC and <span>urethane acrylate </span>.
<span>
</span><span>If a chemical compound accelerates and regulates metabolic reactions, which type of role does it play - structural or physiological?
</span>I believe the function that it plays would be physiological since it focuses more on the regulation of the reactions inside the body.
Here is an acid-base reaction. Hydrochloric acid (HCl) reacts with strontium hydroxide [ Sr(OH)2 ]
Ions H+ and OH- neutralize each other. If the amounts are not equal, one of them will be in excess.
Follow the steps as
1. Find moles of ions: mole= Molarity * Volume (in liter) ; n= M * V OR millimole = Molarity * Volume (in ml) ;
2. Write the equation
3. Find out excess ion
4. Use final volume (V acid + V base ) to calculate concentration of excess ion.
n HCI = 28 ml * 0.10 M = 0.28 mmol, releases 0.28 mmol H+ ions
n Sr(OH)2= 60 ml * 0.10 M= 0.60 mmol, releases 2* 0.60=1.20 mmol OH- ions
since Sr(OH)2⇒ Sr2+ + 2OH-
Neutralization reaction is OH- + H+ ---> H2O. The ratio is 1:1. That means 1 mmol hydroxide ions will neutralize 1 mmol hydrogen ions. Since OH- ions are greater in amount, they will be in excess
n(OH-) - n(H+)= 1.20 - 0.28 = 0.92 mmol OH- ions UNREACTED.
Total volume= V acid + V base= 28 ml + 60 ml = 98 ml
Molarity of OH- ions= mole / Vtotal = 0.92/98= 0.009 M
The answer is 0.009 M.
Answer: Options (a) and (d) are the correct answer.
Explanation:
A catalyst is the substance which helps in increasing the rate of reaction.
Activation energy is the minimum amount of energy required by reactants to start the reaction. On addition of catalyst, the path of reaction changes because the energy barrier gap reduces and hence, the activation energy also decreases.
In the absence of catalyst, we need to increase the temperature so that reaction can occur quickly.
Whereas on addition of catalyst, there is no need to increase the temperature as the catalyst itself is sufficient to increase the rate of reaction. As a result, temperature should be lowered when there is addition of catalyst in the reaction.
Thus, we can conclude that catalysts can save money by essentially lowering the activation energy and temperature required.
Localized molecular orbitals are molecular orbitals which are concentrated in a limited spatial region of a molecule, for example a specific bond or a lone lake on a specific atom.