Answer:
Explanation: The lowest pressure in a laboratory is 4.0×10^-11Pa
Using Ideal gas equation
PV = nRT
P= 4.0×10^-11Pa
V= 0.020m^3
T= 20+273= 293k
n=number of moles = m/A
Where m is the number of molecules and A is the Avogradro's number=6.02×10²³/mol
R=8.314J/(mol × K)
PV= m/A(RT)
4.0×10^-11 ×0.020 = m/6.02×10²³(8.314×293)
m = 4.0×10^-11×0.020×6.02×10^23 / (8.314×293)
m = 1.98×10^8 molecules
Therefore,the number of molecules is 1.98×10^8
Answer: H2O (water)
Explanation:
The answer choices for this question are:
A) H2O
B) N2
C) SO2
D) NO3
E) Cl2
The solution of the problem is:
1) Data:
<span> density, d = 1.4975 g/liter
volume, V = 8.64 liter
pressure, p = 2.384 atm
temperature, T = 349.6 K
2) Formulas:
d = m/V => m = d*V
n = m / molar mass => molar mass = m / n
pV = nRT => n = pV / RT
3) Solution
n = pV / RT = 2.384 atm * 8.64 liter / (0.0821 atm*liter/K*mol * 349.6K)
n = 0.7176 moles
</span>m = dV = 1.4975 g/ liter * <span>8.64 liter = 12.9384 g
molar mass = m / n = 12.9384 g / 0.7176 moles = 18.03 g/mol
That molar mass corresponds to the molar mass of water, therefore the gas is H2O (water vapor).</span>
Answer:
Chemical waste from factories is sometimes dumped into rivers and lakes, or directly into the ground. Pesticides (chemicals that kill insects) applied to farmland enter surface water and groundwater, often in large quantities. Leaks from underground storage tanks for liquids like gasoline go directly into groundwater.
Explanation:
Hope it helps! Correct me if I am wrong!
Im sure about my answer!
If you dont mind can you please mark me as brainlest?
To know the electrostatic force between two charges or between two ions, you can use the Coulomb's Law. The equation is F = k*q1*q1/r^2, where F is the electrostatic force, q1 and q2 are the charger for Na and Cl, and r is the distance between the centers of both atoms. In literature, the distance is 0.5 nm or 0.5 x 10^-9 meters. The charge for Na+ and Cl- is the same magnitude but different in sign. Since Na+ is a cation, its charge is +1.603x10^-19 C (the charge of an electron). For Cl- being an anion, its charge is -1.603x10^-19 C. The constant k is an empirical value equal to 9x10^9. Using the formula:
F = (9x10^9)(+1.603x10^-19)(-1.603x10^-19)/(0.5 x 10^-9)^2
F = -9.25 x 10^-10 Newtons
The negative denotes that the net force is more towards the Cl- ion.