Molar mass Mg = 24.3 g/mol
1 mole mg ------------ 24.3 g
?? moles mg --------- 4.75 g
4.75 x 1 / 24.3 => 0.195 moles of Mg
hope this helps!
The number of moles present in 29.5 grams of argon is 0.74 mole.
The atomic mass of argon is given as;
Ar = 39.95 g/mole
The number of moles present in 29.5 grams of argon is calculated as follows;
39.95 g ------------------------------- 1 mole
29.5 g ------------------------------ ?

Thus, the number of moles present in 29.5 grams of argon is 0.74 mole.
<em>"Your question seems to be missing the correct symbol for the element" </em>
Argon = Ar
Learn more here:brainly.com/question/4628363
<h2>

=
![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
</h2>
Explanation:
- When an aqueous solution of a certain acid is prepared it is dissociated is as follows-
⇄ 
Here HA is a protonic acid such as acetic acid, 
- The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.
- The acid dissociation constant can be given by -
= ![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
- The reaction is can also be represented by Bronsted and lowry -
⇄ ![[H_3O^+] [A^-]](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%5BA%5E-%5D)
- Then the dissociation constant will be
= ![\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH_3O%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Here,
is the dissociation constant of an acid.
The correct answer among the choices listed above is option D. The average kinetic energy of water molecules as water freeze <span>decreases as water releases energy to its surroundings. Energy is released as the molecules go into a more condensed phase which is the solid.</span>
Answer: 84.56L
Explanation:
Initial volume of gas V1 = 100L
Initial temperature T1 = 135°C
Convert temperature in Celsius to Kelvin
( 135°C + 273 = 408K)
Final temperature T2 = 72°C
( 72°C + 273= 345K)
Final volume V2 = ?
According to Charle's law, the volume of a fixed mass of a gas is directly proportional to the temperature.
Mathematically, Charles' Law is expressed as: V1/T1 = V2/T2
100L/408K = V2/345K
To get the value of V2, cross multiply
100L x 345K = V2 x 408K
34500 = V2 x 408K
V2.= 34500/408
V2 = 84.56L
Thus, the volume of the gas becomes 84.56 liters