Answer:
21.3 g. Option B
Explanation:
The reaction is:
4HF(g) + SiO₂(s) → SiF₄(g) + 2H₂O(g)
We analysed it and it is correctly balanced.
4 moles of hydrogen fluoride react to 1 mol of silicon dioxide in order to produce 1 mol of silicon fluoride and 2 moles of water vapor.
We determine molar mass of each reactant:
HF → 1.01 g/mol + 19 g/mol = 20.01 g/mol
SiO₂ → 16 g/mol . 2 + 28.09 g/mol = 60.09 g/mol
We convert mass to moles: 16 g . 1 mol /60.09g = 0.266 moles of glass
Ratio is 1:4. 1 mol of glass react to 4 moles of HF
Our 0.266 moles may react to (0.266 . 4) / 1 = 1.07 moles of gas
We convert moles to mass: 1.07 mol . 20.01 g/mol = 21.3 g
Answer:
211.47 grams
Explanation:
We need to set up a dimensional analysis to solve this problem by converting from moles to grams.
First, find the molar mass of HCl. Since the molar mass of H (hydrogen) is 1.01 g/mol and the molar mass of Cl (chlorine) is 35.45 g/mol, then the molar mass of HCl is:
1.01 + 35.45 = 36.46 g/mol
We have 5.8 moles of HCl, so multiply by its molar mass:
(5.8 mol) * (36.46 g/mol) = 211.468 ≈ 211.47 g
The answer is thus 211.47 grams.
<em>~ an aesthetics over</em>
Best* and are there answer choic
Answer:
Period 7 element
Hydrogen
Lithium Beryllium Fluorine
Sodium Magnesium Chlorine
Potassium Calcium Bromine
Rubidium Strontium Iodine
Explanation: