<span>You will need to weight those balls only twice.
You weight 6 balls, 3 on one side of weight and 3 on another, and other
3 balls you have are in your hand.
Check picture bellow</span>
Answer: x=0.6435011
Step-by-step explanation:
Take the inverse tangent of both sides of the equation to extract
x
from inside the tangent.
x
=
arctan
(
3
4
)
Evaluate
arctan
(
3
4
)
.
x
=
0.6435011
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from
π
to find the solution in the fourth quadrant.
x
=
(
3.14159265
)
+
0.6435011
Simplify the expression to find the second solution.
Tap for more steps...
x
=
3.78509376
Find the period.
Tap for more steps...
π
The period of the
tan
(
x
)
function is
π
so values will repeat every
π
radians in both directions.
x
=
0.6435011
+
π
n
,
3.78509376
+
π
n
, for any integer
n
Consolidate the answers.
x
=
0.6435011
+
π
n
, for any integer
n
They are congruent by SSS. (Side-side-side)
The two outside pairs of sides are stated as congruent.
The inside side is congruent by reflective property
We have 3 congruent sides, so the triangle is congruent by SSS
Answer:
<em><u>2</u></em><em><u>.</u></em><em><u>3</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>3</u></em><em><u>,</u></em><em><u> </u></em><em><u>1</u></em><em><u>)</u></em><em><u> </u></em>
Step-by-step explanation:
1) Simplify 3 × (1, 1) 3 × (1, 1) to 3× 1, 13 × 1,1.
<em>2</em><em>.</em><em>3</em><em> </em><em>-</em><em> </em><em>(</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>1</em><em>,</em><em> </em><em>1</em><em> </em><em>)</em>
2) Simplify 3 × 1 to 3.
2.3 - ( 3, 1)
<em><u>Therefor</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>2</u></em><em><u>.</u></em><em><u>3</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>(</u></em><em><u> </u></em><em><u>3</u></em><em><u>,</u></em><em><u> </u></em><em><u>1</u></em><em><u>)</u></em><em><u>.</u></em>