Answer:
a) If we apply pressure to a fluid in a sealed container, the pressure will be felt undiminished at every point in the fluid and on the walls of the container.
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area(A2) of the piston.
P=F/A
P1=P2
F1/ A1= F2/ A2
F2= F1* A2/ A1
The pressure acting on one side is transmitted to all the molecules of the liquid because the liquid is incompressible.
In an incompressible liquid, the volume and amount of mass does not vary when pressure is applied.
Answer:
5.4 J.
Explanation:
Given,
mass of the object, m = 2 Kg
initial speed, u = 5 m/s
mass of another object,m' = 3 kg
initial speed of another orbit,u' = 2 m/s
KE lost after collusion = ?
Final velocity of the system
Using conservation of momentum
m u + m'u' = (m + m') V
2 x 5 + 3 x 2 = ( 2 + 3 )V
16 = 5 V
V = 3.2 m/s
Initial KE = 
= 
= 31 J
Final KE = 
Loss in KE = 31 J - 25.6 J = 5.4 J.
Answer:
The bell has a potential energy of 8550 [J]
Explanation:
Since the belt is 45 [m] above ground level, only potential energy is available. And this energy can be calculated by means of the following equation.
![E_{p}= W*h\\E_{p} = 190*45\\E_{p}=8550[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D%20W%2Ah%5C%5CE_%7Bp%7D%20%3D%20190%2A45%5C%5CE_%7Bp%7D%3D8550%5BJ%5D)
Answer:
Nuclease is the answer I know
I hope this is the answer
For this case, the first thing you should do is define a reference system.
Once the system is defined, we must follow the following steps:
1) Do the sum of forces in a horizontal direction
2) Do the sum of forces in vertical direction
The forces will be balanced if for each direction the net force is equal to zero.
The forces will be unbalanced if for each direction the net force is nonzero.
Answer:
Add the forces in the horizontal and vertical directions separately.