Answer: light and heat
Explanation:Our sun is the source of all life on Earth, and solar energy is useful to us in many different ways. The sun creates two main types of energy - light and heat - that we can harness for many activities ranging from photosynthesis in plants to creating electricity with photovoltaic (PV) cells to heating water and food.
Answer:10.0 mL of 0.00500 M phosphoric acid
Explanation:
If we look at the Ka values of the acids, we will realize that phosphoric acid has a Ka of 7.1 * 10-3. It is the only acid in the list having acid dissociation constant less than 1. This means that it does not ionize easily in solution and a very large volume of base must be added to ensure that it reacts completely. Acids with Ka >1 are generally regarded as strong acids. All the acids listed have Ka>1 except phosphoric acid.
Aluminium + Dioxygen = Ruby
The heat from the hotter water will go into the colder water untl equilibrium is reached. Equilibrium is same temperature!
Now, the heat is proportional to the mass, the specific heat and the temperature difference. The specific heat does not matter since all is water, it will cancel out:
m_1 * c_H20 * ( T_final - T_1 ) = -m_2 * c_H20 * ( T_final - T_2)
Notice the minus, because one wins the heat of the one who loses it. In this way both sides have the same sign:
m_1*(T_final - T_1)=-m_2*(T_final-T_2), or after some simple algebra:
T_final = (m_1 * T_1 + m_2 * T_2 )/(m_1+m_2),
which looks like an arithmetic mean, and one could have gone for this, but the above shows all the work. Notice that if T_1=T_2, T_final=T_1 always, which makes sense.
Now you can convert volume to mass with the density, but since mass = density*volume and it is all water, the density will cancel out and you can work with volumes. If you prefer just say: 120 ml->120 g , etc ...
T_final = (120*95+320*25)/(320+120)=44.0909 degrees Celsius, or ~ 44.09 degrees with two decimal precision as your statement (beware of precision always!).