The binding energy in MeV per atom is - 63284.56 Mev.
The amount of energy needed to detach a particle from a system of particles or to disperse every particle in the system is known as the binding energy. Subatomic particles in atomic nuclei, electrons attached to atom's nuclei, and atoms and ions bonded together in crystals are three examples of where binding energy is very relevant.
If we have a nucleus with Z protons and N neutrons and mass MA, where A = Z + N then its binding energy in MeV is given by: Eb(MeV) = (Zmp + Nmn - MA) x 931.494 MeV/u
Mass of atom = 69.955264 amu
Mass of proton = 1.007825 amu
Mass of neutron = 1.008665 amu
Binding energy, Mev = (Zmp + Nmn - M) × 931.494MeV/u
= ( 1.007825 + 1.008665 - 69.955264) × 931.494
= - 67.938774 × 931.494
= - 63284.56 Mev
Therefore, the binding energy in MeV per atom is - 63284.56 Mev.
Learn more about binding energy here:
brainly.com/question/16795451
#SPJ4
Answer:
it will first star out slow them become fast by mass and speed
Explanation:
speed and mass = fast
Answer: Divergent boundaries -- where new crust is generated as the plates pull away from each other. Convergent boundaries -- where crust is destroyed as one plate dives under another. Transform boundaries -- where crust is neither produced nor destroyed as the plates slide horizontally past each other.
Explanation:
earthquakes volcanos n stuff like that
Explanation:
Molecular formulas show correct and accurate number of each type of the atoms which are present in molecule.
On the other hand, structural formulas show arrangement of atoms and covalent bonds between them.
For example,
The molecular formula for carbon dioxide is 
The structural formula is O = C = O
The best answer to your question is B: suspension.
Goodluck