Answer:
424 mol
Explanation:
Step 1: Given data
Number of atoms of Neon: 2.55 × 10²⁶ atoms
Step 2: Calculate the number of moles corresponding to 2.55 × 10²⁶ atoms of Neon
In order to convert atoms into moles, we need a conversion factor, which is Avogadro's number: there are 6.02 × 10²³ atoms of Neon in 1 mole of atoms of Neon.
2.55 × 10²⁶ atoms × (1 mol/6.02 × 10²³ atoms) = 424 mol
<u>Answer:</u> The mass of solid NaOH required is 80 g
<u>Explanation:</u>
Equivalent weight is calculated by dividing the molecular weight by n factor. The equation used is:

where,
n = acidity for bases = 1 (For NaOH)
Molar mass of NaOH = 40 g/mol
Putting values in above equation, we get:

Normality is defined as the umber of gram equivalents dissolved per liter of the solution.
Mathematically,

Or,
......(1)
We are given:
Given mass of NaOH = ?
Equivalent mass of NaOH = 40 g/eq
Volume of solution = 400 mL
Normality of solution = 5 eq/L
Putting values in equation 1, we get:

Hence, the mass of solid NaOH required is 80 g
Answer:
Assign oxidation numbers to all atoms in the equation.
Compare oxidation numbers from the reactant side to the product side of the equation.
The element oxidized is the one whose oxidation number increased.
Explanation:
Answer:
C: electrons is the 3s orbital are higher than those in the 2s orbital
Explanation:
Looking at the options, the correct one is that the electrons in the 3s orbital will possess more energy than those in the 2s orbital. This is because the the 2s orbitals will be filled with electrons first before the 3s orbital.
Also from basics we know that the energy of an orbital increases as the quantum number increases.
A difference between plant cells and animal cells is that most animal cells are found whereas most plant cells are rectangular. Plant cells have rigid cell wall that surrounds the cell membrane.animals do not have a cell wall