This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:

First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:

Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:

This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more:
It would be an physical change ; if you melt butter the butter goes from a solid to a liquid so therefore the physical state is changed.
B: The total thermal energy is greater in a large body of water than one much smaller
Explanation:
A large lake filled filled with cool water will have more thermal energy than smaller pond filled with warmer water because the total thermal energy is greater in a large body of water than one that is much smaller.
Thermal energy is a form of kinetic energy usually due to transfer of heat energy.
Amount of heat energy is dependent on the differences in temperature, mass and specific heat capacity of a body.
Both lake water will have the same specific heat capacity. Since larger body of water has more mass, it will possess more thermal energy.
learn more:
Specific heat capacity brainly.com/question/7210400
Thermal energy brainly.com/question/914750
#learnwithBrainly
Using hydrogen and Lindlar catalyst the triple bond will be hydrogenated to a double one with a cis conformation.