The volume is 214*8*2012
=3,444,544
Answer:
2 rooms
Step-by-step explanation:
1/2 divided by 1/4 is 2
2 times 1 = 2
Answer - 2
9514 1404 393
Answer:
b = 71 m
A = 83°
C = 29°
Step-by-step explanation:
Many calculators can solve triangles. Apps are available for phone and tablet, or on the internet, like the one used here. In general, it takes less time to use one of these than to type your question into Brainly.
Given two sides and the angle between them, the Law of Cosines is the appropriate relation to use for finding the third side.
b = √(a² +c² -2ac·cos(B))
b = √(76² +37² -2·76·37·cos(67.75°)) ≈ √5015.48
b ≈ 70.82005 ≈ 71 . . . meters
__
One a side and its opposite angle are known, the remaining angles are found using the Law of Sines.
sin(A)/a = sin(B)/b
A = arcsin(a·sin(B)/b) = arcsin(76·sin(67.75°)/70.82005) ≈ 83.33°
A ≈ 83°
C = arcsin(37·sin(67.75°)/70.82005) ≈ 28.92°
C ≈ 29°
Or, you can find the remaining angle from 180° -68° -83° = 29°.
5. . 1
---- - -----
6. . 2
5. . 3
----- - -----
6. . 6
5-3
-------
6
2
-----
6
= 1/3
B
Answer:
Determinant are special number that can only be defined for square matrices.
Step-by-step explanation:
Determinant are particularly important for analysis. The inverse of a matrix exist, if the determinant is not equal to zero.
How to find determinant
For a 2×2 matrix
![det ( \left[\begin{array}{cc}x&y\\a&z\end{array}\right] ) = xz-ay](https://tex.z-dn.net/?f=det%20%28%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5C%5Ca%26z%5Cend%7Barray%7D%5Cright%5D%20%29%20%3D%20xz-ay)
For a 3×3 matrix
we first decompose it to 2×2
![det (\left[\begin{array}{ccc}k&l&m\\o&p&q\\r&s&t\end{array}\right] )\\\\= k*det(\left[\begin{array}{cc}p&q\\s&t\end{array}\right] ) - l*det(\left[\begin{array}{cc}o&q\\r&t\end{array}\right] ) + m*det(\left[\begin{array}{cc}o&p\\r&s\end{array}\right] ) \\\\=k(pt-sq) - l(ot-rq) + m(os-rp)](https://tex.z-dn.net/?f=det%20%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dk%26l%26m%5C%5Co%26p%26q%5C%5Cr%26s%26t%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%5C%5C%3D%20k%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dp%26q%5C%5Cs%26t%5Cend%7Barray%7D%5Cright%5D%20%29%20-%20l%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Do%26q%5C%5Cr%26t%5Cend%7Barray%7D%5Cright%5D%20%29%20%2B%20m%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Do%26p%5C%5Cr%26s%5Cend%7Barray%7D%5Cright%5D%20%29%20%5C%5C%5C%5C%3Dk%28pt-sq%29%20-%20l%28ot-rq%29%20%2B%20m%28os-rp%29)
Example
Find the values of λ for which the determinant is zero
![\left[\begin{array}{ccc}s&-1&0\\-1&s&-1\\0&-1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Ds%26-1%260%5C%5C-1%26s%26-1%5C%5C0%26-1%261%5Cend%7Barray%7D%5Cright%5D)
![det(\left[\begin{array}{ccc}s&-1&0\\-1&s&-1\\0&-1&1\end{array}\right])\\\\= s*det(\left[\begin{array}{cc}s&-1\\-1&1\end{array}\right] ) - (-1)*det(\left[\begin{array}{cc}-1&-1\\0&1\end{array}\right] ) + 0*det(\left[\begin{array}{cc}-1&s\\0&-1\end{array}\right] )\\\\= s(s(1)-(-1*-1)) - (-1)(-1*1 - (-1*0)) + 0\\= s(s - 1)) + 1(-1 + 0) \\=s^{2} -s-1](https://tex.z-dn.net/?f=det%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Ds%26-1%260%5C%5C-1%26s%26-1%5C%5C0%26-1%261%5Cend%7Barray%7D%5Cright%5D%29%5C%5C%5C%5C%3D%20s%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Ds%26-1%5C%5C-1%261%5Cend%7Barray%7D%5Cright%5D%20%29%20-%20%28-1%29%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%26-1%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%29%20%2B%200%2Adet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%26s%5C%5C0%26-1%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%5C%5C%3D%20s%28s%281%29-%28-1%2A-1%29%29%20-%20%28-1%29%28-1%2A1%20-%20%28-1%2A0%29%29%20%2B%200%5C%5C%3D%20s%28s%20-%201%29%29%20%2B%201%28-1%20%2B%200%29%20%5C%5C%3Ds%5E%7B2%7D%20-s-1)
Equating the determinant to zero

s =
* (1 ±5 )
s = 1.61 or -0.61