Answer:
Many plants have thorns on their stems or leaves. What is the MOST likely explanation for the evolution of thorns?
A) Thorns help plants produce more food from photosynthesis.
B) Thorns are an example of a mutation that arises in the genetic code of plants.
C) Thorns help plants to conserve resources like water and soil nutrients that may be used by other organisms.
D) Thorns are an adaptation that some plants have evolved in order to discourage herbivores from eating the plant.
2)
Explanation:
Answer:
PROTON AND NEUTRON
Explanation:
- The mass of proton is :

A proton is one of the main particles that make up the atom . The other two particles are neutron and electron. Protons are found in the nucleus of the atom.This is a tiny , dense region at the centre of the atom. Protons have a positive charge of one (+1) and a mass of 1 atomic mass unit ( amu ) , which is about
. Together with neutrons , they make up virtually all of the mass of an atom.
- The mass of neutron is also approximately:
but a little more than that .
Atoms of all elements - except Hydrogen , have neutrons in their nucleus . Unlike protons and electrons , these have no charge - they are electrically neutral . The mass of a neutron is slightly greater than the mass of a proton but not very significant
Answer:
HF(aq)+NaOH(aq)→NaF(aq)+H2O(l)
Explanation:
Complete question
Dissolved hydrofluoric acid reacts with dissolved sodium hydroxide to form water and aqueous sodium fluoride. What is the net ionic equation
Equilibrium equation between the undissociated acid and the dissociated ions
HF(aq)⇌H+(aq)+F−(aq)
Sodium hydroxide will dissociate aqueous solution to produce sodium cations, Na+, and hydroxide anions, OH−
NaOH(aq)→Na+(aq)+OH−(aq)
Hydroxide anions and the hydrogen cations will neutralize each other to produce water.
H+(aq)+OH−(aq)→H2O(l)
On combining both the equation, we get –
HF(aq)+Na+(aq)+OH−(aq)→Na+(aq)+F−(aq)+H2O(l)
The Final equation is
HF(aq)+NaOH(aq)→NaF(aq)+H2O(l)
➡ ANSWER
☑ <em><u>C</u></em><em><u>.</u></em><em><u> </u></em><em><u>3.5 105</u></em><em><u> </u></em><em><u>Hz</u></em>
Answer:
Covalent compounds have weak forces of attraction between the binding molecules. Thus less energy is required to break the force of bonding. Therefore covalent compounds have low melting and boiling point.
Explanation: