D
The suns energy is radiating onto the earth, that is the only example
Here we have to get the effect of addition of 0.25 moles of gas C on the mole fraction of gas A in a mixture of gas having constant pressure.
On addition of 0.25 moles of C gas, the mole fraction of gas A will be
.
The partial pressure of gas A can be written as
=
×P (where
is the mole fraction of gas A present in the mixture and P is the total pressure of the mixture.
The mole fraction of gas A in a mixture of gas A and C is =
and
respectively.
Thus on addition of 0.25 moles of C gas, the mole fraction of gas A will be
.
Which is different from the initial state.
Answer: A “system in exchange of matter with its environment, presenting import and export, building-up and breaking-down of its material components.”
Explanation:
I think you want to ask the complete ionic equation and net ionic equation. For complete ionic equation: 3Ba2+ + 6Cl- + 2Al3+ + 3SO42- -->3BaSO4 + 2Al3+ + 6Cl-. For net ionic equation: 3Ba2+ + 3SO42- -->3BaSO4.
Answer:
4.35 atm
Explanation:
According to the information given;
- Initial volume of the gas, V₁ is 2.50 L
- Initial pressure of the gas is standard pressure P₁, normally 1 atm
- New volume of the gas, V₂ is 575 mL
We are required to determine the new pressure of the gas, P₂ ;
To answer the question, we are going to use the Boyle's law, that relates pressure and volume at constant temperature.
According to Boyle's law;
P₁V₁ = P₂V₂
Therefore, to determine the new pressure, P₂, we rearrange the formula;
New pressure, P₂ = P₁V₁ ÷ V₂
Thus;
P₂ = ( 1 atm × 2.50 L) ÷ 0.575 L
= 4.3478 atm
= 4.35 atm
Therefore, the new pressure of the gas is 4.35 atm