((|Vtrue-Vobserved|) / (Vtrue)) x 100
1.77777%error
An imaginary line joining a planet and the sun sweeps out an equal area of space in equal amounts of time. Thus, the speed of the planet increases as it nears the sun and decreases as it recedes from the sun.
Answer:
Explanation is in the answer
Explanation:
The pH of the buffer solution does not change appreciably because the strong acid (free H⁺) reacts with conjugate base of buffer producing more weak acid. pH formula of buffers is (Henderson-Hasselbalch formula):
pH = pKa + log ( [A⁻] / [HA] )
The addition of strong acid decreases [A⁻] increasing [HA]. pH change just in the log of the ratio of [A⁻] with [HA], that is a real little effect over pH of the buffer solution.
Answer : The pH of buffer is 9.06.
Explanation : Given,

Concentration of HBrO = 0.34 M
Concentration of KBrO = 0.89 M
Now we have to calculate the pH of buffer.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[KBrO]}{[HBrO]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BKBrO%5D%7D%7B%5BHBrO%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of buffer is 9.06.