Answer:




Explanation:
The electrical reactance is defined as:

Where:

So, replacing the data provided by the problem:

Now, the impedance can be calculated as:

Where:

Replacing the data:

In order to find the magnitude of the impedance we can use the next equation:

We can use Ohm's law to find the current:

Therefore the current is:

And its magnitude is:

Finally the phase angle of the current is given by:

Answer:
In That Case, It Gets Rid Of The Heat By Evaporating Water (sweat). During Bicycling, A Typical 72.0 Kgperson's Body Produces Energy At A Rate Of About 501 W Due To Metabolism ... If the air temperature is the same as the temperature of your skin (about 30 ∘C), your body cannot get rid of heat by transferring it to the air.
Explanation:
Answer: 
Explanation:
According to the described situation we have the following data:
Horizontal distance between lily pads: 
Ferdinand's initial velocity: 
Time it takes a jump: 
We need to find the angle
at which Ferdinand jumps.
In order to do this, we first have to find the <u>horizontal component (or x-component)</u> of this initial velocity. Since we are dealing with parabolic movement, where velocity has x-component and y-component, and in this case we will choose the x-component to find the angle:
(1)
(2)
(3)
On the other hand, the x-component of the velocity is expressed as:
(4)
Substituting (3) in (4):
(5)
Clearing
:

This is the angle at which Ferdinand the frog jumps between lily pads
Answer:
The corridor's distance is "90 m".
Explanation:
- She heads in the east directions but creates the first pause, meaning she crosses the distance 'x' in step 1.
- Now, provided that perhaps the distance by her to another fountain or waterfall just after the first stop is twice as far away she traveled.
- Because she moved the distance of 'x,' then, therefore, her distance towards the fountain of '2x.' She casually strolls and once again pauses 60 m beyond her stop.
- The gap about her to the waterfall during that time approximately twice the distance and her to the eastern end of the hallway.
- Assume her gap from either the east end of the platform seems to be 'y' at either the second stop, after which '2y' may become the distance between the 2nd pause and the waterfall.
Now,
⇒ 
⇒ 
The total distance of the corridor will be:
= 
= 
= 
= 