Hey there!
We know that a chemical reaction is balanced when there is the same amount of each element on both sides of the equation.
According to the law of conservation of mass, matter cannot be created or destroyed, so we must have the same amount of each element on each side of a chemical equation.
We count the amount of each element on each side, and the products should have the same number as the reactants.
Hope this helps!
Answer:
Barium and Calcium
Explanation:
When heated with chlorine,
Both calcium and barium are able to form ionic bonds.
Hydrogen can only form bonds that are partial positive. It is not strong enough to be considered an ionic bond.
Silicon forms strong covalent with chlorine, called silicon tetrachloride. The structure is in diamond form which requires a lot of heat energy to break the bonds are way more than energy needed to break the bonds between calcium chloride.
Krypton is an inert element which does not form bonds with any elements under standard conditions
Answer:
C. An electron at this electrode has a higher potential energy than it has at a standard hydrogen electrode.
Explanation:
The standard hydrogen electrode (SHE) is used to measure the electrode potential of substances. The standard hydrogen electrode is arbitrarily assigned an electrode potential of zero. Recall that electrode potentials are always measured as reduction potentials in electrochemical systems.
For an electrode that has a negative electrode potential, electrons at this electrode have a higher potential energy compared to electrons at the standard hydrogen electrode. Electrons flow from this electrode to the hydrogen electrode.
On the other hand, a positive electrode potential implies that an electron at this electrode has a lower potential energy than it has at a standard hydrogen electrode. Hence electrons will flow from the standard hydrogen electrode to this electrode.
Answer:
Option A. 6.75 (6.20/85.6)
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 6.2cm³
Initial concentration (C1) = 6.75M
Final volume (V2) = 85.6cm³
Final concentration (C2) =.?
The final concentration can be obtained by using the dilution formula as show below:
C1V1 = C2V2
6.75 x 6.2 = C2 x 85.6
Divide both side by 85.6
C2 = (6.75 x 6.2) /85.6
C2 = 6.75 (6.2 / 85.6).
Answer:

Explanation:
Hello,
In this case, we can first compute the volume of the sample in mL from the ounces:

Thus, with the volume of the sample, we can compute the amount of sugar given the 10 g of sugar per 100 mL of soft drink as shown below:

Best regards.