<h3>
Answer:</h3>
70.906 g
<h3>
Explanation:</h3>
We are given;
- Atoms of Chlorine = 1.2 × 10^24 atoms
We are required to calculate the mass of Chlorine
- We know that 1 mole of an element contains atoms equivalent to the Avogadro's number, 6.022 × 10^23.
- That is , 1 mole of an element = 6.022 × 10^23 atoms
- Therefore; 1 mole of Chlorine = 6.022 × 10^23 atoms
But since Chlorine gas is a molecule;
- 1 mole of Chlorine gas = 2 × 6.022 × 10^23 atoms
But, molar mass of Chlorine gas = 70.906 g/mol
Then;
70.906 g Of chlorine gas = 2 × 6.022 × 10^23 atoms
= 1.20 × 10^24 atoms
Thus;
For 1.2 × 10^24 atoms ;
= ( 70.906 g/mol × 1.2 × 10^24 atoms ) ÷ (1.20 × 10^24 atoms)
<h3>= 70.906 g </h3>
Therefore, 1.20 × 10^24 atoms of chlorine contains a mass of 70.906 g
=
Answer:
+3
Explanation:
Sorry, I don't have one for now. I remember answering this a while ago, but I don't remember the exact reason why it's 3+.
Answer:
What statements?
Explanation:
they both release harmful chemicals and can pollute the earth and destroy our ecosystems.
Answer:
bat dipo maklaro ang pic po
The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>