Answer:
The less mass in a given volume of air the less dense the air is going to be.
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
Answer:
I think beaker three will take longer to boil since there is more water present,compared to the other beakers
Answer:
Theoretical moles of V are 1.6 moles
Explanation:
The theoretical yield of a reaction is defined as the amount of product you would make if all of the limiting reactant was converted into product.
In the reaction:
V2O5(s) + 5Ca(i) → 2V(i) + 5CaO(s)
Based on the reaction, 1 mol of V2O5 needs 5 moles of Ca for a complete reaction. As there are just 4 moles, <em>limiting reactant is Ca.</em> As there are produced 2 moles of V per 5mol of Ca, Theoretical moles of V are:
4 moles of Ca × (2mol V / 5Ca) = <em>1.6 moles of V</em>
<em></em>
I hope it helps!