If the resistors are arranged in a shape of a square, then they are in a series type of circuit. This circuit arrangement is a non-branching, one-way flow of electrons. The total resistance in a series circuit is the summation of the individual resistances, If you place the ohmmeter (measures resistance) on two non-adjacent sides, then, you are measuring the resistance of two of the resistors.
Resistance = 2(1 kΩ) = 2 kΩ
What happens is that if u put gas in a ball and placed in a hot climate it will start burning Bc u have gas inside the ball
Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
Answer:
E = 10⁵ J
Explanation:
given,
Power, P = 100 TW
= 100 x 10¹² W
time, t = 1 ns
= 1 x 10⁻⁹ s
The energy of a single pulse is:-
Energy = Power x time
E = P t
E = 100 x 10¹² x 1 x 10⁻⁹
E = 10⁵ J
The energy contained in a single pulse is equal to 10⁵ J
Answer: a) for 150 Angstroms 6.63 *10^-3 eV; b) for 5 Angstroms 6.02 eV
Explanation: To solve this problem we have to use the relationship given by De Broglie as:
λ =p/h where p is the momentum and h the Planck constant
if we consider the energy given by acceleration tube for the electrons given by: E: e ΔV so is equal to kinetic energy of electrons p^2/2m
Finally we have:
eΔV=p^2/2m= h^2/(2*m*λ^2)
replacing we obtained the above values.