Take into account that in a standing wave, the frequency f of the points executing simple harmonic motion, is simply a multiple of the fundamental harmonic fo, that is:
f = n·fo
where n is an integer and fo is the first harmonic or fundamental.
fo is given by the length L of a string, in the following way:
fo = v/λ = v/(L/2) = 2v/L
becasue in the fundamental harmonic, the length of th string coincides with one hal of the wavelength of the wave.
Momentum is (mass) times (speed), so nothing that is at rest has any momentum. If the battleship is at rest, then a mosquito in flight, a leaf falling from a tree, and your speedy baseball each have more momentum than the ship has.
9.3 x 10⁻⁶N
Explanation:
Given parameters:
Mass 1 = 70kg
Mass 2 = 2000kg
distance = 1m
Unknown:
force between them =
Solution:
The force between the two masses will be a gravitational force of attraction.
F = 
G is universal gravitation constant = 6.67430×10−¹¹ N⋅m²/kg²
r is the distance between the two masses
Substituting the parameters:
F =
= 9.3 x 10⁻⁶N
Learn more:
Universal gravitation constant
brainly.com/question/1724648
#learnwithBrainly
Answer:
<em>The cyclist is traveling at 130 m/s</em>
Explanation:
<u>Constant Acceleration Motion
</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

The cyclist initially travels at 10 /s and it's accelerating at a=6m/s^2. We need to know the new speed when t= 20 seconds have passed.
Apply the above equation:



The cyclist is traveling at 130 m/s
Answer:

Explanation:
Given:
Thickness of the paperweight cube, 
apparent depth from one side of the inbuilt paper in the plastic cube, 
apparent depth from the other side of the inbuilt paper in the plastic cube, 
Now as we know that refractive index is given as:

- Let the real depth form first side of the slab be,

- Then the depth from the second side of the slab will be,

Since refractive index for an amorphous solid is an isotropic quantity so it remains same in all the direction for this plastic.




Now the refractive index:


