Your body is pushing down on a chair because it is being attracted by gravity, the reason that your body is not moving down because there is a normal force acting on your body; together the net force of weight (m*g) and normal force is equal to zero
Answer:
x = 45 cm
Explanation:
Given that,
The length of a rod, L = 50 cm
Mass, m₁ = 0.2 kg
It is at 40cm from the left end of the rod.
We need to find the distance from the left end of the rod should a 0.6kg mass be hung to balance the rod.
The centre of mass of the rod is at 25 cm.
Taking moments of both masses such that,

The distance from the left end is 40+5 = 45 cm.
Hence, at a distance of 45 cm from the left end it will balance the rod.
I found the answer sheet online for you
Answer:
Go in notifications, it'll show if it was answered. If it doesn't show that a person answered it, wait a while, someone might respond :)
Explanation:
On the Top right of your screen, theres a bell button. Click that and it will show all the notifications. it will also show if a person answered it.
It will pop up like
*random username* answered your question! ]
Hope this helped
Answer:
a) p=0, b) p=0, c) p= ∞
Explanation:
In quantum mechanics the moment operator is given by
p = - i h’ d φ / dx
h’= h / 2π
We apply this equation to the given wave functions
a) φ =
.d φ dx = i k
We replace
p = h’ k
i i = -1
The exponential is a sine and cosine function, so its measured value is zero, so the average moment is zero
p = 0
b) φ = cos kx
p = h’ k sen kx
The average sine function is zero,
p = 0
c) φ =
d φ / dx = -a 2x
.p = i a g ’2x
The average moment is
p = (p₂ + p₁) / 2
p = i a h ’(-∞ + ∞)
p = ∞