Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
Answer:
#1 is an organism
#2 is cell
#4 - Digestive System gets nutrients (good) from food and hands it over to the blood and Circulatory System then carries those nutrients where they need to go
I definitly believe the answer is c. 2
Answer:
0.24 g
Explanation:
Given that:
The average number of the calories for the carbohydrates = 4.1 calorie / g
Also,
6 - oz serving of the diet soda contains less than 1 calorie per can
So,
Maximum mass of carbohydrate = Maximum calorie / Average number of the calories for the carbohydrates
The maximum of the calorie can be 1 calorie per can
So,
<u>Maximum mass of carbohydrate = 1 calorie / 4.1 calorie / g = 0.24 g</u>
Answer:
The answer to your question is 6.0 moles of O₂
Explanation:
Data
2KClO₃ ⇒ 2KCl + 3O₂
moles of O₂ = ?
moles of KCl = 4
Process
To find the number of moles of O₂, use proportions and cross multiplication.
Use the coefficients of the balanced equation.
2 moles of KCl ----------------- 3 moles of O₂
4 moles of KCl ----------------- x
x = (4 x 3) / 2
-Simplification
x = 12/2
-Result
x = 6 moles of O₂
-Conclusion
When 4,0 moles of KCl are produced, 6.0 moles of O₂ will be produced.