Answer:
energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Explanation:energy known as the latent heat of vaporization is required to break the hydrogen bonds. At 100 °C, 540 calories per gram of water are needed to convert one gram of liquid water to one gram of water vapour under normal pressure.
Answer:
Water has the greatest ΔEN
ΔEN H₂O → 3.4 - 2.1 = 1.3 Option D.
Explanation:
We should find the Electronegativity data in the Periodic table for all the elements:
C : 2.6
O: 3.4
H: 2.1
S: 2.6
N: 3.0
a. ΔEN CO₂ → 3.4 - 2.6 = 0.4
b. ΔEN H₂S → 2.6 - 2.1 = 0.5
c. ΔEN NH₃ → 3 - 2.1= 0.9
d. ΔEN H₂O → 3.4 - 2.1 = 1.3
Answer:
For many solids dissolved in liquid water, the solubility increases with temperature. The increase in kinetic energy that comes with higher temperatures allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions.
Explanation:
Hope this helps!