Answer: n= 3, l= 0 , m= 0 and s=[/tex]\frac{-1}{2}[/tex]
Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
Magnetic quantum number : It describes the orientation of the orbital. It is represented as 'm'. The value of m ranges from -l to +l.
Spin quantum number: It describes the spin of the electron. It is represented as 's'. The value of s can be +1/2 or -1/2


Thus electron enters 3s orbital , thus n= 3, l= 0 , m= 0 and s=[/tex]\frac{-1}{2}[/tex]
Answer:

Explanation:
Hello there!
In this case, since the buffer is not given, we assume it is based off ammonia, it means the ammonia-ammonium buffer, whereas the ammonia is the weak base and the ammonium ion stands for the conjugate acid. In such a way, when adding HI to the solution, the base of the buffer, NH3, reacts with the former to promote the following chemical reaction:

Because the HI is totally ionized in solution so the iodide ion becomes an spectator one.
Best regards!
Answer:
<h3>no it is not allowed</h3>
Explanation:
<h3>Liwis structure shows the elements symbol with dots thet represents valance electrons ; in second row elements their atomic number is 3 up to 10 , from Li up to Ne from their electron configuration their valance electron will be from 1 up to 8 respectivelly ,if lewis structure represents the element with it is symbol and dots that represents valance electron the second row elements cannot have more than an octet of valance electrons surrounding it.</h3>
<h3>I think it is help ful for you </h3>
<span>By definition, the first ionization energy is the energy required to remove the most loosely held electron from one mole of gaseous atoms to produce 1 mole of gaseous ions each with a charge of 1+. </span><span />
It is the crust, the least dense layer.