It would take 147 hours for 320 g of the sample to decay to 2.5 grams from the information provided.
Radioactivity refers to the decay of a nucleus leading to the spontaneous emission of radiation. The half life of a radioactive nucleus refers to the time required for the nucleus to decay to half of its initial amount.
Looking at the table, we can see that the initial mass of radioactive material present is 186 grams, within 21 hours, the radioactive substance decayed to half of its initial mass (93 g). Hence, the half life is 21 hours.
Using the formula;
k = 0.693/t1/2
k = 0.693/21 hours = 0.033 hr-1
Using;
N=Noe^-kt
N = mass of radioactive sample at time t
No = mass of radioactive sample initially present
k = decay constant
t = time taken
Substituting values;
2.5/320= e^- 0.033 t
0.0078 = e^- 0.033 t
ln (0.0078) = 0.033 t
t = ln (0.0078)/-0.033
t = 147 hours
Learn more: brainly.com/question/6111443
Answer:
lesser the molar mass of the gas higher the no. of moles included in a certain mass sample. ie at STP more volume is required for the gas having less molar mass.
He has the smallest molar mass.
Therefore bag of He is the biggest.
Answer:
I would try but i just need points good luck tho
Sedimentary rocks are formed when different layers of debris ( usually sand ) are forced together under pressure.
Metamorphic rock forms from other types of rock that have been changed by a combination of high heat and pressure.
Igneous rock forms when Lava/Magma cools down