Answer:
0.120 m
Explanation:
What you need to know here is that frequency and wavelength have an inverse relationship as described by the equation
mark me as Brainliest
Answer:
The number of hydrogen atoms is 4.96x10²⁴.
Explanation:
The number of atoms can be found with the following equation:

Where:
N: is the Avogadro's number = 6.022x10²³ atoms/mol
η: is the number of moles of hydrogen
n: is the number of hydrogen atoms
First, we need to find the number of hydrogen moles. The number of moles of CH₄ is:

Where:
m: is the mass of methane = 33 g
M: is the molar mass of methane = 16.04 g/mol

Now, since we have 4 hydrogen atoms in 1 mol of methane, the number of moles of hydrogen is:

Hence, the number of hydrogen atoms is:

Therefore, the number of hydrogen atoms is 4.96x10²⁴.
I hope it helps you!
<span>Among important crop plants, nitrogen-fixing root nodules are most commonly an attribute of
B) legumes</span>
Answer: 3.01 x 10^24 atoms
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of water = 6.02 x 10^23 atoms
5 moles of water = Z atoms
To get the value of Z, cross multiply
Z x 1 mole = (6.02 x 10^23 atoms x 5 moles)
Z•mole = 30.1 x 10^23 atoms•mole
Divide both sides by 1 mole
Z•mole/1 mole = 30.1 x 10^23 atoms•mole/ 1 mole
Z = 30.1 x 10^23 atoms
[Place the value of Z in standard form]
Z = 3.01 x 10^24 atoms
Thus, there are 3.01 x 10^24 atoms in 5 mole of water
Answer:
The specific heat of the metal is 0.466 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q= 2330 J
- c= ?
- m= 25 g
- ΔT= 200 °C
Replacing:
2330 J= c*25 g* 200 °C
Solving:

c=0.466 
<u><em>The specific heat of the metal is 0.466 </em></u>
<u><em></em></u>