Given:
u(initial velocity)=0
a=5.54m/s^2
v(final velocity)=2 m/s
v=u +at
Where v is the final velocity.
u is the initial velocity
a is the acceleration.
t is the time
2=0+5.54t
t=2/5.54
t=0.36 sec
A conservative force is a force that when work is done against this force the work done does not depend on the path taken only the initial and final position.
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
Answer:
In a way it does, but overall, there are many factors that affect your rank. In general, and talking about the average Platinum II, they are pretty decent according to casual player standards.
Explanation:
Complete question:
It is measured that 3/4 of a body's volume is submerged in oil of density 800kg/m³. What is the specific gravity of oil?
Answer:
The specific gravity of the oil is 0.8.
Explanation:
Given;
density of the oil,
= 800 kg/m³
density of water,
= 1000 kg/m³
The specific gravity of any substance is the ratio of the substance density to the density of water.
Specific gravity of the oil = density of the oil / density of water
Specific gravity of the oil = 800/1000
Specific gravity of the oil = 0.8
Therefore, the specific gravity of the oil is 0.8.