Answer:
D. because the light is reflected back into the fiber along its sides
Explanation:
The fiber is constructed in a way that the light is bent/reflected/refracted toward the center core of glass. So, from the center core, there is a layer above it that has a different propagation than the core, and above that the same thing. To give you a real world visual example, if you look down in a pool of water, then stick a straight stick into it, you see that the straight stick appears to bend. That is what is happening to the light as it travels through a different medium (air to water). This same effect is incorporated in the fiber optic cable construction.
Explanation:
Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
Answer:
Magnitude of the average force exerted on the wall by the ball is 800N
Explanation:
Given
Contact Time = t = 0.05 seconds
Mass (of ball) = 0.80kg
Initial Velocity = u = 25m/s
Final Velocity = 25m/s
Magnitude of the average force exerted on the wall by the ball is given by;
F = ma
Where m = 0.8kg
a = Average Acceleration
a = (u + v)/t
a = (25 + 25)/0.05
a = 50/0.05
a = 1000m/s²
Average Force = Mass * Average Acceleration
Average Force = 0.8kg * 1000m/s²
Average Force = 800kgm/s²
Average Force = 800N
Hence, the magnitude of the average force exerted on the wall by the ball is 800N
Answer:
E = 13.2 kWh
, Cost = $ 10.8
Explanation:
We can look for the consumed energy from the expression of the power
P = W / t
The work is equal to the variation of the kinetic energy, for which
P = E / t
E = P t
look for the energy consumed in one day and multiply by the days of the month in the month
E = 110 4 30
E = 13200 W h
E = 13.2 kWh
the cost of this energy is
Cost = 0.9 12
Cost = $ 10.8
Answer:
The average impact force is 12000 newtons.
Explanation:
By Impact Theorem we know that impact done by the sledge hammer on the chisel is equal to the change in the linear momentum of the former. The mathematical model that represents the situation is now described:
(1)
Where:
- Average impact force, in newtons.
- Duration of the impact, in seconds.
- Mass of the sledge hammer, in kilograms.
,
- Initial and final velocity, in meters per second.
If we know that
,
,
and
, then we estimate the average impact force is:


The average impact force is 12000 newtons.