1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
14

The term "ideal gas" refers to a gas for which certain assumptions have been made. Which of the following is not such an assumpt

ion?(A) Consists of a small number of tiny particles that are far apart- relative in their size.(B) Collisions between gas particles and between particles and container walls are elastic collisions.(C) Gas particles are in continuous , rapid, random, motion. Therefore, passes between kinetic energy.(D) There are no forces of attraction between particles
Physics
1 answer:
Jobisdone [24]3 years ago
6 0

Answer:

(A) Consists of a small number of tiny particles that are far apart- relative in their size.

Explanation:

An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.

The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).

It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.

Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).

Kinetic Energy: It is the energy that will have an object as a consequence of its movement.

You might be interested in
What does the negative sign in F = –kx mean?
VashaNatasha [74]

It says that the force of a spring is always opposite to the direction in which you stretch it or compress it. (the direction of 'x')

In other words, a spring that's disturbed always tries to put itself back to it's normal length, where x would be zero.

8 0
3 years ago
when a person is making cardiovascular gains through aerobic activity, they are increasing what to the lungs and heart?
gladu [14]
When a person is making cardiovascular gains through aerobic activity they are increasing the amount of oxygen to the heart and lungs. This keeps the heart and lungs of a person very healthy. It decreases the chance of heart diseases.
8 0
3 years ago
You throw a tennis ball straight up (neglect air resistance). It takes 7.0 seconds to go up and then return to your hand. How fa
sattari [20]

Answer:

Velocity of throwing = 34.335 m/s

Explanation:

Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.

Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s

Equation of motion result we have v = u + at

Substituting

             0 = u - 9.81 x 3.5

             u = 34.335 m/s

Velocity of throwing = 34.335 m/s

6 0
3 years ago
A tree falls in a forest. How many years must pass before the 14C activity in 1.03 g of the tree's carbon drops to 1.02 decay pe
Illusion [34]

Answer:

t = 5.59x10⁴ y

Explanation:

To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:

A_{t} = A_{0}\cdot e^{- \lambda t}    (1)

<em>where A_{t}: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>

To find A₀ we can use the following equation:  

A_{0} = N_{0} \lambda   (2)

<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>

From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:        

N_{0} = \frac{m_{T} \cdot N_{A} \cdot abundance}{m_{^{12}C}}

<em>where m_{T}: is the tree's carbon mass, N_{A}: is the Avogadro's number and m_{^{12}C}: is the ¹²C mass.  </em>

N_{0} = \frac{1.03g \cdot 6.022\cdot 10^{23} \cdot 1.3\cdot 10^{-12}}{12} = 6.72 \cdot 10^{10} atoms ^{14}C    

Similarly, from equation (2) λ is:

\lambda = \frac{Ln(2)}{t_{1/2}}

<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

\lambda = \frac{Ln(2)}{5700y} = 1.22 \cdot 10^{-4} y^{-1}

So, the initial activity A₀ is:  

A_{0} = 6.72 \cdot 10^{10} \cdot 1.22 \cdot 10^{-4} = 8.20 \cdot 10^{6} decays/y    

Finally, we can calculate the time from equation (1):

t = - \frac{Ln(A_{t}/A_{0})}{\lambda} = - \frac {Ln(\frac{1.02decays \cdot 24h \cdot 365d}{1h\cdot 1d \cdot 1y \cdot 8.20 \cdot 10^{6} decays/y})}{1.22 \cdot 10^{-4} y^{-1}} = 5.59 \cdot 10^{4} y              

I hope it helps you!

4 0
3 years ago
If you place a paper clip very close to a magnet, the paper clip
Alik [6]
The answer is “D. all of the above”!

Metal from the paper clip is attracted to the magnet, so it will naturally move toward and stick to the magnet. This will cause the paper clip to temporarily become a magnet for other metals. I hope this helped!
7 0
2 years ago
Other questions:
  • A positively-charged piece of plastic exerts an attractive force on an electrically neutral piece of paper. This is because: 1.
    13·1 answer
  • In your own words, describe the purpose of using a chemical equation.
    14·2 answers
  • Types of energy transferred from mechanical waves
    13·1 answer
  • Help ill give you brainliest !!!
    10·1 answer
  • How does knowledge of the energy content of food help diabetics make smart choices
    8·1 answer
  • A 0.71 kg spike is hammered into a railroad tie. The initial speed of the spike is equal to 3.8 m/s. If the tie and spike togeth
    7·1 answer
  • You have to run 2.2 miles in track. How far is that in feet? There are 5280 feet in 1 mile
    7·1 answer
  • The water table is the upper limit of the
    5·1 answer
  • Please help with 2,3,5 and 6
    7·1 answer
  • A charge +3q is placed at x = 0 and a charge +11q is placed at x = 5 units. Where, along the x-axis is the net force on a charge
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!