<h2>Answer: Electric energy
</h2>
Voltaic cells use chemical reactions to generate electrical energy, as well as the reverse process.
This type of cell is mainly composed of the anode (a metal electrode where oxidation occurs) and the cathode (a metal electrode where the reduction occurs). These electrodes are placed in two compartments separated by a porous plate or membrane and immersed in a medium containing ions.
This is how, <u>when the chemical reaction of oxide-reduction occurs, electricity is generated.</u>
Answer:
the light emitting must be of greater wavelength
Explanation:
For this exercise we must use the Planck equation
E = h f
And the speed of light
c = λ f
f = c / λ
We replace
E = h c / λ
The wavelength of the green light is of the order of 500 nm, let's calculate the energy
E = 6.63 10⁻³⁴ 3 10⁸ /λ
E = 1,989 10⁻²⁵ /λ
λ = 500 nm = 500 10⁻⁹ m
E = 1,989 10⁻²⁵ / 500 10⁻⁹
E = 3,978 10⁻¹⁹ J
That is the energy of the transition for a transition is an intermediate state the energy must be less, this implies that the wavelength must increase. For the explicit case of a state with half of this energy
= E / 2
= 3,978 10⁻¹⁹ / 2 = 1,989 10⁻¹⁹
Let's clear and calculate
λ = h c / E
λ = 1,989 10⁻²⁵ / 1,989 10⁻¹⁹
λ = 1 10⁻⁶ m
Let's reduce to nm
λ = 1000 nm
This wavelength is in the infrared region
the light emitting must be of greater wavelength
Cells undergo cell division ( creates more cells to replace dead cells )
Answer:
A. The particle model, because only high-energy frequencies of light can remove electrons .
Explanation:
Each photon of blue light has higher energy than each photon of red light has . So when each photon strikes each electron , it gets ejected . But the photon of red light has not sufficient energy to eject electron . Once the photon of red light strikes the electron , the energy is wasted off . Energy of photon can not be accumulated . Thus photon behaves like particle .