The odysseyware answer is the same as his wood manure and food crops
The amount of Al2O3 in moles= 1.11 moles while in grams = 113.22 grams
<em><u>calculation</u></em>
2 Al + Fe2O3 → 2Fe + Al2O3
step 1: find the moles of Al by use of <u><em>moles= mass/molar mass </em></u>formula
= 60.0/27= 2.22 moles
Step 2: use the mole ratio to determine the moles of Al2O3.
The mole ratio of Al : Al2O3 is 2: 1 therefore the moles of Al2O3= 2.22/2=1.11 moles
Step 3: finds the mass of Al2O3 by us of <u><em>mass= moles x molar mass</em></u><em> </em>formula.
The molar mass of Al2O3 = (2x27) +( 16 x3) = 102 g/mol
mass is therefore= 102 g/mol x 1.11= 113.22 grams
Answer:
read down below
Explanation:
Building on the Curies' work, the British physicist Ernest Rutherford (1871–1937) performed decisive experiments that led to the modern view of the structure of the atom. ... Because it was the first kind of radiation to be discovered, Rutherford called these substances α particles.
The time taken by Carbon-14 to decay radioactively from 120g to 112.5g is 22,920 years.
<h3>How do we calculate the total time of decay?</h3>
Time required for the whole radioactive decay of any substance will be calculated by using the below link:
T = (n)(t), where
- t = half life time = 5730 years
- n = number of half life required for the decay
Initial mass of Carbon-14 = 120g
Final mass of Carbon-14 = 112.5g
Left mass = 120 - 112 = 7.5g
Number of required half life for this will be:
- 1: 120 → 60
- 2: 60 → 30
- 3: 30 → 15
- 4: 15 → 7.5
4 half lives are required, now on putting values we get
T = (4)(5730) = 22,920 years
Hence required time for the decay is 22,920 years.
To know more about radioactive decay, visit the below link:
brainly.com/question/24115447
#SPJ1
It’s DEFINITELY 2 like DEFINITELY