1. This can be due to the dissolving of the solid in liquid and form a solution.
Dissolving is a physical property because dissolving doesn't form new substances and the chemical composition of the solid is not changed.
The color building up over the time can be due to the rate of dissolving of the solid and amount of particles have been dissolved.
Example:
- Dissolving of CuSO₄ solid in water.
- This develops a blue color.
2. This can be due to the chemical reaction between the solid and liquid.
Chemical reaction is a chemical property because from reacting substances new substances can be formed which the chemical formula is different from initial substances.
The color building up over the time can be due to the rate of the reaction and the amount of reactants.
Example:
- The reaction between calcium metal with water.
- The color of Ca(OH)₂ is white color.
- Reaction is
Ca(s) + 2H₂O(l) → Ca(OH)₂(aq) + H₂(g)
I think the correct answer from the choices listed above is option D. When a molecular compound melts, they undergo the process of phase change from solid to liquid therefore m<span>olecules arranged in a regular pattern change to an irregular pattern. Hope this answers the question.</span>
Answer:
it is b because its releases heat in to all directions and not b because it staying inside and not releasing anything :)
Explanation:
Answer:
Strontium is a soluble earth metal with the nuclear number 38. Phosphate is a polyatomic particle containing phosphorus and oxygen molecules. Strontium loses electrons to turn out to be emphatically charged, and phosphate is an adversely charged particle.
Explanation:
Answer: There are 0.006 moles of acid in the flask.
Explanation:
Given:
= 21.35 mL,
= 0.150 M
= 25.0 mL,
= ?
Formula used to calculate molarity of
is as follows.

Substitute the values into above formula as follows.

As molarity is the number of moles of a substance present in a liter of solution.
Total volume of solution = 
= 21.35 mL + 25.0 mL
= 46.36 mL (1 mL = 0.001 L)
= 0.04636 L
Therefore, moles of acid required are calculated as follows.

Thus, we can conclude that there are 0.006 moles of acid in the flask.