Answer: 0.225 atm
Explanation:
For this problem, we have to use Boyle's Law.
Boyle's Law: P₁V₁=P₂V₂
Since we are asked to find P₂, let's manipulate the equation.
P₂=(P₁V₁)/V₂

With this equation, the liters cancel out and we will be left with atm.
P₂=0.225 atm
A mole of CO2 = 2 moles of O2
8 CO moles x 2 =
16 moles
HA ⇄ H⁺ + A⁻
so:
![\frac{[H^+][A^-]}{[HA]} = 1.5 x 10^{-5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D%20%3D%201.5%20x%2010%5E%7B-5%7D%20%20)
and now:

= 1.5 x 10⁻⁵
x is considered very small compared to 0.15
x² = 2.25 x 10⁻⁶
x = 1.5 x 10⁻³
So [H⁺] = 1.5 x 10⁻³
pH = - log [H⁺] = - log (1.5 x 10⁻³) = 2.83
Answer:
the volume would be 69.034mL
Explanation:
Answer:
The central atom has 3 electron domains.
Explanation:
According to the Valence Shell electron pair repulsion theory (VSEPR) put forward by Gillespie and Nyholm in 1957, the shape of a molecule is determined by repulsion between all the electron pairs (electron domains) present in the valence shell.
The electron pairs or electron domains are known to position themselves as far apart in space as possible in order to minimize repulsions.
Hence, when the central atom of a molecule contains three electron domains, they are positioned at an angle of 120° from each other to minimize repulsions. Hence the answer.