Hi! I would say the voltage can be measured at 0.083 volts
Answer is 54 °C.
<em>Explanation;</em>
We can simply use heat equation
Q = mcΔT
Where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Let's assume that the initial temperature is T.
Q = 5.53 × 10⁵ J
m = 2850 g
c = 4.186 J/g °C
ΔT = (100 - T) °C <em>Since the water is boiling, the final temperature is 100 °C.</em>
By applying the equation,
5.53 × 10⁵ J = 2850 g x 4.186 J/g °C x (100 - T) °C
(100 - T) °C = 5.53 × 10⁵ J / (2850 g x 4.186 J/g °C )
(100 - T) °C = 46.35 °C
T = 100 - 46.35 C = 53.65 °C
≈ 54 °C
Answer:
The table refers to emissions of CO2 from burning oil, coal and gas for energy use. Carbon dioxide also enters the Atmosphere from burning wood and waste materials and from some industrial processes such as cement production.
Explanation:
Those waves carry an amount of energy that can be measured. The energy in a wave is determined by two variables. One is amplitude, which is the distance from the rest position of a wave to the top or bottom. Large amplitude waves contain more energy. Wave A has a greater intensity and transfers more energy. Wave B has a greater intensity and transfers more energy. Waves that require matter to transfer energy are mechanical waves. The matter through which a mechanical wave travels is called a medium. A mechanical wave travels as energy is transferred from particle to particle in the medium. There are two kinds of mechanical waves. The greater the waves amplitude the greater the waves energy. ... A wavelength will travel only as long as it has energy to carry. Gamma rays
Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation. Electromagnetic waves cause oscillations in electrical and magnetic fields. It is important to remember that all waves transfer energy but they do not transfer matter . For example, if a ball is placed on the surface of a pond when ripples move across it, the ball will move up and down but not outwards with the wave.
I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.