Answer:
Mole fraction H₂O → 0.72
Mole fraction C₂H₅OH → 0.28
Explanation:
By the mass of the two elements in the solution, we determine the moles of each:
25 g . 1 mol/ 18g = 1.39 moles of water (solute)
25 g . 1 mol / 46 g = 0.543 moles of ethanol (solvent)
Mole fraction solute = Moles of solute / Total moles
Mole fraction solvent = Moles of solvent / Total moles
Total moles = Moles of solute + Moles of solvent
1.39 moles of solute + 0.543 moles of solvent = 1.933 moles → Total moles
Mole fraction H₂O = 1.39 / 1.933 → 0.72
Mole fraction C₂H₅OH= 0.543 / 1.933 → 0.28
Remember that sum of mole fractions = 1
Pb(NO3)2 (aq) + 2 NaI (aq) --> PbI2 (s) + 2 NaNO3 (aq)
Starting with with 200.0 grams of Pb(NO3)2 and 120.0 grams of NaI:
A. What is the limiting reagent?
B. How many grams of PbI2 is theoretically formed?
C. How many grams of the excess reactant remains?
D. If 48 grams of NaNO3 actually formed in the reaction, what is the percent yield of this reaction?
<h3>
Answer:</h3>
812 kPa
<h3>
Explanation:</h3>
- According to Boyle's law pressure and volume of a fixed mass are inversely proportional at constant absolute temperature.
- Mathematically,

At varying pressure and volume;
P1V1=P2V2
In this case;
Initial volume, V1 = 2.0 L
Initial pressure, P1 = 101.5 kPa
Final volume, V1 = 0.25 L
We are required to determine the new pressure;

Replacing the known variables with the values;

= 812 kPa
Thus, the pressure of air inside the balloon after squeezing is 812 kPa
Pretty sure it’s Mixture if I’m not wrong