Answer:
Future value of annuity (FV) = $13,782.12 (Approx)
Step-by-step explanation:
Given:
Periodic payment p = $500
Interest rate r = 13% = 13%/4 = 0.0325 (Quarterly)
Number of period n = 5 x 4 = 20 quarter
Find:
Future value of annuity (FV)
Computation:
![Future\ value\ of\ annuity\ (FV)=p[\frac{(1+r)^n-1}{r} ] \\\\Future\ value\ of\ annuity\ (FV)=500[\frac{(1+0.0325)^{20}-1}{0.0325} ] \\\\Future\ value\ of\ annuity\ (FV)=13,782.1219 \\\\](https://tex.z-dn.net/?f=Future%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3Dp%5B%5Cfrac%7B%281%2Br%29%5En-1%7D%7Br%7D%20%5D%20%5C%5C%5C%5CFuture%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3D500%5B%5Cfrac%7B%281%2B0.0325%29%5E%7B20%7D-1%7D%7B0.0325%7D%20%5D%20%5C%5C%5C%5CFuture%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3D13%2C782.1219%20%5C%5C%5C%5C)
Future value of annuity (FV) = $13,782.12 (Approx)
leci:ANWSER:idk really wanna anwer right now prople later
MMMLXXXIX
~ hope this helps!
Answer:
C
Step-by-step explanation:
You have to add the whole equation not only a part of it.
Observe the given figure.
Here, angle T and R are the inscribed angles.
And sum of inscribed angles is half of measure of intercepted arcs.
Since, the measure of intercepted arcs is 360 degrees.
Therefore, 

Hence, the sum of the two angles is 180 degrees.
Therefore, these are the supplementary angles.
Therefore, angle T and angle R are supplementary angles.
Hence, proved.