Answer:
his acceleration rate is -0.00186 m/s²
Explanation:
Given;
initial position of the car, x₀ = 100 miles = 160, 900 m ( 1 mile = 1609 m)
time of motion, t₀ = 60 minutes = 60 mins x 60 s = 3,600 s
final position of the car, x₁ = 150 miles = 241,350 m
time of motion, t₁ = 100 minutes = 100 mins x 60 s = 6,000 s
The initial velocity is calculated as;
u = 160, 900 m / 3,600 s
u = 44.694 m/s
The final velocity is calculated as;
v = 241,350 m / 6,000 s
v = 40.225 m/s
The acceleration is calculated as;
Therefore, his acceleration rate is -0.00186 m/s²
Answer:
Explanation:
Velocity of sound in air at 20 degree = 343 m/s
Velocity of sound in water at 20 degree = 1470 m/s
Time taken in to and fro movement in air
=( 2 x 10) / 343 = 0.0583 s
Rest of the time is
.171 - .0583 = .1127 s
This time is taken to cover distance in water. If d be the depth of lake
2d / velocity = time taken
2 d / 1470 = .1127
d = 82.83 m
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
Answer:
The pitch will progressively lower
Explanation:
If i were bungee jumping from a bridge while blowing a hand-held air horn and someone who remains on the bridge will hear a decreased pitch or frequency as the source is moving away from the stationary listener as per the Dooplers effect. Hence, the pitch will progressively lower as the source is moving away from the observer.
D=m/V therefore the answer is 120/200 or 0.6