It is 29 and a half days long
When an object in simple harmonic motion is at its maximum displacement, its <u>acceleration</u> is also at a maximum.
<u><em>Reason</em></u><em>: The speed is zero when the simple harmonic motion is at its maximum displacement, however, the acceleration is the rate of change of velocity. The velocity reverses the direction at that point therefore its rate of change is maximum at that moment. thus the acceleration is at its maximum at this point</em>
<em />
Hope that helps!
Answer:
The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Explanation:
Let suppose that shells are not experiencing any effect from non-conservative forces (i.e. friction, air viscosity) and changes in gravitational potential energy are negligible. The explosive force experienced by the shell inside the barrel can be estimated by Work-Energy Theorem, represented by the following formula:
(1)
Where:
- Explosive force, measured in newtons.
- Barrel length, measured in meters.
- Mass of the shell, measured in kilograms.
,
- Initial and final speeds of the shell, measured in meters per second.
If we know that
,
,
and
, then the explosive force experienced by the shell inside the barrel is:

![F = \frac{(1250\,kg)\cdot \left[\left(750\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right]}{2\cdot (15\,m)}](https://tex.z-dn.net/?f=F%20%3D%20%5Cfrac%7B%281250%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cleft%28750%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%7D%7B2%5Ccdot%20%2815%5C%2Cm%29%7D)

The explosive force experienced by the shell inside the barrel is 23437500 newtons.
Answer:
v = (10 i ^ + 0j ^) m / s, a = (0i ^ - 9.8 j ^) m / s²
Explanation:
This is a missile throwing exercise.
On the x axis there is no acceleration so the velocity on the x axis is constant
v₀ₓ = 10 m / s
On the y-axis velocity is affected by the acceleration of gravity, let's use the equation
v_y =
- g t
at the highest point of the trajectory the vertical speed must be zero
v_y = 0
therefore the velocity of the body is
v = (10 i ^ + 0j ^) m / s
the acceleration is
a = (0 i ^ - g j⁾
a = (0i ^ - 9.8 j ^) m / s²
Answer:
clockwise and counter clockwise
it depends wich way you start paddling