Answer:
<em>The new force is 2/3 of the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:

Factoring out 2/3:

Substituting the original force:

The new force is 2/3 of the original force
Answer:
Yes
Explanation:
When an object has more mass it takes more gravity to keep it down therefore producing friction which in return reduces the amount of kinetic energy created. A change in an object's speed has an greater effect on its kinetic energy. than a change in its mass has, because kinetic energy is proportional to.
Answer:
30 degrees
Explanation:
Reflects off of mirror 1 at 60 degrees....this makes it incident to second mirror at 30 degrees ....then angle of reflection equals this angle of incidence = 30 degrees
See atached diagram
Answer:
The horizontal range will be 
Explanation:
We have given initial speed of the shell u = 
Angle of projection = 51°
Acceleration due to gravity 
We have to find maximum range
Horizontal range in projectile motion is given by

So the horizontal range will be 
Answer:
r = 0m is the Minimum distance from the axis at which the block can remain in place wothout skidding.
Explanation:
From a sum of forces:
where Ff = μ * N and 
N - m*g = 0 So, N = m*g. Replacing everything on the original equation:
(eq2)
Solving for r:

If we analyze eq2 you can conclude that as r grows, the friction has to grow (assuming that ω is constant), so the smallest distance would be 0 and the greatest 1.41m. Beyond that distance, μ has to be greater than 0.83.