<h2>
Answer: B. Gravitational potential energy </h2>
Explanation:
<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field.
</em>
That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the <u>Earth</u>, in which <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy
will be:
Where
is the mass of the object,
the acceleration due gravity and
the height of the object.
As we can see, the value of
is directly proportional to the height.
Answer:
accuracy
Explanation:
You are trying to measure the mass of several different objects when you realize that there is a large wad of gum stuck to the underside of the balance pan. Removing the gum will improve the <u>accuracy</u> of your measurements.
Answer:
t = 444.125 sec
Explanation:
Given data:
V = 24 volt
I = 0.1 ampere
mass of water mw = 51 gm
cr = 4.18 J/gm degree K^-1
mass of resistor = 8 gm
cr = 3.7 J/gm degree K^-1
we know that power is given as
Power P = VI
But P =E/t
so equating both side we have

solving for t


t = 444.125 sec
Potential energy is high and kinetic is equal i believe.
Answer:
In 0.5 seconds.
Explanation:
The time would be the same because it only depends on the height and the vertical component of the initial velocity. This is of course because each direction must be treated independently. Since between both cases only the horizontal speed changes, the height is the same and the vertical component of the initial velocity is null for both, the time to fall is the same.