If one bulb goes out then all the others won't light up because electricity will be cut off. It's a disadvantage because in a parallel circuit if one bulb burns out all the others will still be on because they won't be affected. I hope I've helped you ☺
Answer:
t = 3.516 s
Explanation:
The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0
If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.
This can be done knowing that
1 km = 1000 m
1 h = 3600 s
Therefore
1 km/h = (1000/3600) m/s = 0.2777... m/s
100 km/h = 27.777... m/s
Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:
27.777 m/s = 7.9 m/s^2 t
Solving for t
t = (27.7777 / 7.9) s = 3.516 s
Answer:
False
Explanation:
This proposition is false because by example the sun exerts a force over the earth and them are not in contact
Answer:
The answer is the principal Quantum number (n)
Explanation:
The principal quantum number is one of the four quantum numbers associated with an atom.
It is denoted by a number n=1,2,3,4 etc
It tells both size (directly) and energy (indirectly) of an orbital.
When n=1 means it is the closest to the nucleus and is the smallest orbital and with increase in principal quantum number, it depicts that size of the orbital is increasing.
It tells the energy of the orbital as well as smaller number means less distance from nucleus and having less energy. Since electrons requires to absorb energy to jump into higher orbitals making n=2,3,4 etc. Thus electrons in the orbitals with higher n number indicates higher energy orbitals.
The SI unit for acceleration is m/s2 ( D)