Answer:
okay it's nun of ur bussiness love
Explanation:
<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
Answer:
e) 120m/s
Explanation:
When the ball reaches its highest point, its velocity becomes zero, meaning
.
where is the initial velocity.
Solving for we get
which is the time it takes the ball to reach the highest point.
Now, after the ball has reached its highest point, it turns around and falls downwards. After time since it had reached the highest point, the ball has traveled downwards and the velocity it has gained is
,
and we are told that this is twice the initial velocity ; therefore,
which gives
Thus, the total time taken to reach velocity is
This , we are told, is 36 seconds; therefore,
and solving for we get:
which from the options given is choice e.
Id say d because it releases hydrogen and on the other hand a base receives it
<span />
Answer:
This is because The energies of atoms are quantized.
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed