the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid.
Answer:
The correct answers are the proportionality of the fields concerning distance, vector fields, and forces at a distance.
Explanation:
The similarities between magnetic fields and electric fields are that electric fields are produced by two charges that can be positive and negative. Magnetic fields are associated with two magnetic poles, although they are also produced by moving charges. Both fields are inversely proportional to the square of the distance between the sources, both fields are vectorial and both act by distant forces.
Have a nice day!
I think is A or B it depends on like what the trying to answer
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Answer:
Plzzzzzzzzzzzzzzzz brainliest
Explanation:
In static friction, the frictional force resists force that is applied to an object, and the object remains at rest until the force of static friction is overcome. In kinetic friction, the frictional force resists the motion of an object. ... The frictional force itself is directed oppositely to the motion of the object.