Answer:
A kite with a 100 foot-long string is caught in a tree. When the full length of the string is stretched in a straight line to the ground, it touches the ground a distance of 30 feet from the bottom of the tree. Find the measure of the angle between the kite string and the ground.
17°
27°
63°
73°
Step-by-step explanation:
Answer:
4.446 then 4.464 then 5.228
Step-by-step explanation:
Hope this HELPS :D
Answer:
105cm Squared
Step-by-step explanation:
I did the math. No explenation needed.
Go on safari , && go to a circumference calculator , ion wanna explain rn .
Answer:
Step-by-step explanation:
The complete question is
Water flows into a tank according to the rate F(t)= (t+6)/(1+t), and at the same time empties out at the rate E(t)= (ln(t+2))/(t+1), with both F(t) and E(t) measured in gallons per minute. How much water, to the nearest galllon, is in the tank at time t=10 minutes.
Let C(t) be the amount of water in the tank at time t. We now that the rate of change of the tank is given by
![\frac{dC}{dt}=[\tex]rate at which water flows in- rate at which water flows out. Then [tex]\frac{dC}{dt}=\frac{t+6}{t+1}-\frac{\ln(t+2)}{(t+1)}[\tex]so, the desired expression is obtained by integrating with respect to t. This leads us to [tex]C(t) = \int \frac{t+1}{t+1}+ \frac{5}{t+1} - \frac{\ln(t+2)}{(t+1)} dt=t+ 5 \ln (|t+1|)-\int \frac{\ln(t+2)}{(t+1)} dt +C](https://tex.z-dn.net/?f=%5Cfrac%7BdC%7D%7Bdt%7D%3D%5B%5Ctex%5Drate%20at%20which%20water%20flows%20in-%20rate%20at%20which%20water%20flows%20out.%20%3C%2Fp%3E%3Cp%3EThen%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7BdC%7D%7Bdt%7D%3D%5Cfrac%7Bt%2B6%7D%7Bt%2B1%7D-%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3Eso%2C%20the%20desired%20expression%20is%20obtained%20by%20integrating%20with%20respect%20to%20t.%20%3C%2Fp%3E%3Cp%3EThis%20leads%20us%20to%20%3C%2Fp%3E%3Cp%3E%5Btex%5DC%28t%29%20%20%3D%20%5Cint%20%5Cfrac%7Bt%2B1%7D%7Bt%2B1%7D%2B%20%5Cfrac%7B5%7D%7Bt%2B1%7D%20-%20%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%20dt%3C%2Fp%3E%3Cp%3E%3Dt%2B%205%20%5Cln%20%28%7Ct%2B1%7C%29-%5Cint%20%5Cfrac%7B%5Cln%28t%2B2%29%7D%7B%28t%2B1%29%7D%20dt%20%2BC)
Unfortunately, the integral
cannot be expressed using fundamental functions. So, the problem cannot have an specific function (if you are willing to know the complete answer, the integral of this function uses the polylogarithm function with n=2).
Since you want the exact amount of water at time, you need to give C a value, that is, you need to know an initial condition for the problem. This means, you need to know the amount of water in the tank at time 0