Answer:
its most definitely c. trust me
Explanation:
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
The answer is X
Explanation:
Cause the highest points will most likely have the most potential energy
Answer:
Explanation:
a= 7.8i + 6.6j - 7.1k
b= -2.9 i+ 7.4 j+ 3.9k , and
c = 7.6i + 8.8j + 2.2k
r = a - b +c
=7.8i + 6.6j - 7.1k - ( -2.9i + 7.4j+ 3.9k )+ ( 7.6i + 8.8j + 2.2k)
= 7.8i + 6.6j - 7.1k +2.9i - 7.4j- 3.9k )+ 7.6i + 8.8j + 2.2k
= 18.3 i +18.3 j - k
the angle between r and the positive z axis.
cosθ = 18.3 / √18.3² +18.3² +1
the angle between r and the positive z axis.
= 18.3 / 25.75
cos θ= .71
45 degree
There are many forms of energy, but they can all be put into two categories: kinetic and potential. Kinetic energy is motion––of waves, electrons, atoms, molecules, substances, and objects. Potential energy is stored energy and the energy of position––gravitational energy