1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
3 years ago
5

Which pair of elements is most similar? Na and CI Li and Ne Co and Ne and Ar

Physics
1 answer:
UkoKoshka [18]3 years ago
7 0

Answer:

If I remembered correctly the answer would be Ne and Ar(Neon and Argon

You might be interested in
How do you reconcile the law of falling bodies (that all objects fall to earth at the same acceleration despite their weight) wi
ASHA 777 [7]

From the gravity acceleration theorem due to a celestial body or planet, we have that the Force is given as

F = \frac {GMm} {r ^ 2}

Where,

F = Strength

G = Universal acceleration constant

M = Mass of the planet

m = body mass

r = Distance between centers of gravity

The acceleration by gravity would be given under the relationship

g = \frac {F} {m}

g = \frac {GM} {r ^ 2}

Here the acceleration is independent of the mass of the body m. This is because the force itself depended on the mass of the object.

On the other hand, the acceleration of Newton's second law states that

a = \frac {F} {m}

Where the acceleration is inversely proportional to the mass but the Force does not depend explicitly on the mass of the object (Like the other case) and therefore the term of the mass must not necessarily be canceled but instead, considered.

5 0
3 years ago
Based on Archimedes' principle, we know that if an object displaces a given weight of water, then the object is being buoyed up
Virty [35]
True. If the amount displaced is more than the mass, it floats. If the amount is less than the mass, it will sink.
8 0
3 years ago
Read 2 more answers
A uniform electric field of strength E points to the right. An electron is fired with a velocity v0 to the right and travels a d
zvonat [6]

Answer:

<u />D_l=d<u />

Explanation:

From the question we are told that:

The Electric field of strength direction =Right

The Velocity of The First Electron=V_0

The Velocity of The Second Electron=V_0

Therefore

V_{e1}=V_{e2}

Generally, the equation for the Horizontal Displacement of electron is mathematically given by

D=\frac{at^2}{2}

Where

Acceleration is given as

a=\frac{V_o}{2d}

And

Time

T=\frac{d}{v_0}

Therefore horizontal displacement towards the left is

D_l=\frac{(\frac{V_o}{2d})(\frac{d}{v_0})^2}{2}

<u />D_l=d<u />

5 0
3 years ago
Traumatic brain injury such as a concussion results when the head undergoes a very large acceleration. Generally an acceleration
eimsori [14]

The complete text of the problem is:

<em>"Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1000 m/s2 lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.43 m above the floor. If the floor is hardwood, the child's head is brought to rest in approximately 1.8 mm. If the floor is carpeted, this stopping distance is increased to about 1.1 cm. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate. "</em>

<em />

<u>Solution:</u>

1) Acceleration: -2336 m/s^2 on the hardwood floor, -382 m/s^2 on the carpeted floor

First of all, we need to calculate the speed of the child just before he hits the floor. This can be done by using the equation

v^2 - u^2 = 2ad

where

v is the final speed

u = 0 is the initial speed (the child starts from rest)

a = g = 9.8 m/s^2 is the acceleration of gravity

d = 0.43 m is the distance covered by the child as he falls from the bed

Solving for v,

v=\sqrt{2ad}=\sqrt{2(9.8)(0.43)}=2.9 m/s

Now we can analyze the moment of the collision. The child hits the floor with an initial speed of v = 2.9 m/s, and he comes to a stop, so the final speed is v' = 0. If the floor is hardwood, the stopping distance is

d = 1.8 mm = 0.0018 m

So we can find the acceleration by using again the equation

v'^2 - v^2 = 2ad

Solving for a,

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.0018)}=-2336 m/s^2

For the carpeted floor instead,

d=1.1 cm = 0.011 m

therefore the acceleration is

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.011)}=-382 m/s^2

2) Duration: 1.24 ms for the hardwood floor, 7.59 ms for the carpeted floor

We can find the duration of the collision in both cases by using the equation of the acceleration

a=\frac{v'-v}{t}

where

v' = 0

v = 2.9 m/s

For the hardwood floor,

a=-2336 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-2336}=0.00124 s = 1.24 ms

For the carpeted floor,

a=-382 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-382}=0.00759 s = 7.59 ms

We can now comment the results using the initial statement of the problem:

"Generally an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1,000 m/s2 lasting for at least 1ms will cause injury"

Therefore, the fall on the hardwood floor can result in injury (since the acceleration is greater than 1,000 m/s2 for more than 1 ms), while the fall on the carpeted floor is not dangerous (much less than 1000 m/s^2).

8 0
3 years ago
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
Other questions:
  • Two cars are heading towards one another . Car a is moving with an acceleration of 11. And carb is moving at -4 m/s^2. The cars
    15·1 answer
  • (30 points) Which below is an adaption that favors the survival of an organism?
    15·2 answers
  • Why are hurricanes considered more damaging than tornadoes when tornadoes have stronger winds
    12·2 answers
  • Water from a fire hose is directed horizontally against a wall at a rate of 50.0 kg/s and aspeed of 42.0 m/s. Calculate the forc
    12·2 answers
  • A 300 gg bird flying along at 5.7 m/sm/s sees a 10 gg insect heading straight toward it with a speed of 29 m/sm/s (as measured b
    14·1 answer
  • How to solve period per loop
    14·1 answer
  • What is a mixture?
    13·2 answers
  • Why should fishing be more sustainable?
    8·1 answer
  • If you added enough ropes and pulleys to lift any size mass would it be possible to never have to apply a force to move your mas
    5·2 answers
  • An engineer is working to design a bouncy ball that conserves all of its kinetic and potential energy. She drops the ball to the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!