Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
Answer:
3.51s
Explanation:
There are many students who can not get answers step by step and on time
So there are a wats up group where you can get help step by step and well explained by the trusted experts.
B I think. Newtons first law talks about how if some thing is traveling at like 5 mph it’ll stay at 5 mph forever until the force is put on it.
Radiation is a type of heat transfer wherein there is no need for medium or media through which the heat will flow. Consequently, the radiation waves are able to travel through vacuum. The best observation as evidence to conclude that heat is indeed transferred by radiation is the increase of temperature of the receiving body.
The ball because the Kinetic Energy transfers from the bat to the ball, increasing the movement and acceleration of the ball because of the Kinetic Energy transferred from the origin force (The bat)