a) ![v=\frac{d_{tot}}{t_{tot}}=\frac{(3 h)(60 mph)+20 mi}{3 h +t_2}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bd_%7Btot%7D%7D%7Bt_%7Btot%7D%7D%3D%5Cfrac%7B%283%20h%29%2860%20mph%29%2B20%20mi%7D%7B3%20h%20%2Bt_2%7D)
The average speed is equal to the ratio between the total distance (
and the total time taken (
):
![v=\frac{d_{tot}}{t_{tot}}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bd_%7Btot%7D%7D%7Bt_%7Btot%7D%7D)
the distance travelled by the trucker in the first 3 hour can be written as the time multiplied by the velocity:
![d_1 = (3 h)(60 mph)=180 mi](https://tex.z-dn.net/?f=d_1%20%3D%20%283%20h%29%2860%20mph%29%3D180%20mi)
So the total distance is
![d_{tot}=d_1 +d_2 = 180 mi+20 mi=200 mi](https://tex.z-dn.net/?f=d_%7Btot%7D%3Dd_1%20%2Bd_2%20%3D%20180%20mi%2B20%20mi%3D200%20mi)
The total time is equal to the first 3 hours + the time taken to cover the following 20 miles in the city:
![t_{tot}=3 h +t_2](https://tex.z-dn.net/?f=t_%7Btot%7D%3D3%20h%20%2Bt_2)
So, the equation can be rewritten as:
![v=\frac{d_{tot}}{t_{tot}}=\frac{(3 h)(60 mph)+20 mi}{3 h +t_2}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bd_%7Btot%7D%7D%7Bt_%7Btot%7D%7D%3D%5Cfrac%7B%283%20h%29%2860%20mph%29%2B20%20mi%7D%7B3%20h%20%2Bt_2%7D)
b) 0.50 h (half a hour)
Since we know the value of the average speed,
, we can substitute it into the previous equation to find the value of
, the time the trucker drove in the city:
![v=\frac{200 mi}{3h +t_2}\\3h+t_2 = \frac{200 mi}{v}\\t_2 = \frac{200 mi}{v}-3h=\frac{200 mi}{57.14 mph}-3 h=0.50 h](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B200%20mi%7D%7B3h%20%2Bt_2%7D%5C%5C3h%2Bt_2%20%3D%20%5Cfrac%7B200%20mi%7D%7Bv%7D%5C%5Ct_2%20%3D%20%5Cfrac%7B200%20mi%7D%7Bv%7D-3h%3D%5Cfrac%7B200%20mi%7D%7B57.14%20mph%7D-3%20h%3D0.50%20h)
The answer is 49
Hope this helps
X= 50
Replace the x with the given number.
Y= 50-20
Y= 30
My math teacher time me is easier to do it after
Answer:
I think the equation is 7l +5=60
Step-by-step explanation: