1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
chubhunter [2.5K]
3 years ago
11

Which three types of electromagnetic waves carry most of the Sun's energy that strikes Earth?

Physics
1 answer:
pshichka [43]3 years ago
3 0

Answer:

A.

Explanation:

You might be interested in
How can you determine the rate of a chemical reaction?
DanielleElmas [232]
Take a look at a simple reaction like the one below:

In this reaction some reactant A is turned into some product B. The rate of reaction can be represented by a decrease in concentration of A over time or as the increase of B over time. This is written:

6 0
3 years ago
Why is vehicle systems forensics useful today? Cars are less computerized than before More people own cars Devices like smartpho
kvasek [131]

Answer:

Devices like smartphones can interface with cars and leave evidence

Explanation:

Vehicle system forensic relates to digital data stored in a vehicles system.

Bluetooth connection times can be used to figure out at what time the owner was near his car. e.g. between a smart-watch and car infotainment system

6 0
3 years ago
8. John has to hit a bottle with a ball to win a prize. He throws a 0.4 kg ball with a velocity of 18 m/s. It hits a 0.2 kg bott
nasty-shy [4]

<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>

<u>Explanation:</u>

To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

m_1u_1+m_2u_2=m_1v_1+m_2v_2

where,

m_1,u_1\text{ and }v_1 are the mass, initial velocity and final velocity of ball.

m_2,u_2\text{ and }v_2 are the mass, initial velocity and final velocity of bottle.

We are given:

m_1=0.4kg\\u_1=18m/s\\v_1=?m/s\\m_2=0.2kg\\u_2=0m/s\\v_2=25m/s

Putting values in above equation, we get:

(0.4\times 18)+(0.2\times 0)=(0.4\times v_1)+(0.2\times 25)\\\\v_1=5.5m/s

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.

5 0
3 years ago
A football is thrown horizontally with an initial velocity of(16.6 {\rm m/s} ){\hat x}. Ignoring air resistance, the average acc
Ray Of Light [21]

Answer:

A) 16.6 m/s i -17.2 m/s j B) 23.9 m/s  c) 46º below horizontal.

Explanation:

A) Once released, the football is not under the influence of any external force in the horizontal direction, so it  continues moving at a constant speed equal to the initial velocity, i.e., 16.6 m/s.

If we choose the horizontal direction to be coincident with the x-axis, and make positive the direction towards the right (assuming that  this was the direction along which the football was thrown), we can write the horizontal component of the veelocity vector, as follows:

vₓ = 16.6 m/s i

In the vertical direction, the football, once released, is in free fall, starting from rest.

So, we can find the vertical component of the velocity vector, at a given point in time, applying the definition of acceleration, as follows:

vy = a*t = -g*t = -9.81 m/s²*1.75 s = -17.2 m/s

Assuming that the upward direction is the positive  for the y-axis (perpendicular to the chosen  x-axis), we can write the vertical component of  the velocity vector, at t=1.75 s, as follows:

vy = -17.2 m/s j

So, the velocity vector, in terms of the unit vectors i and j, can be written in this way:

v = 16.6 m/s i -17.2 m/s j

b) The magnitude of this vector can be found applying trigonometry, as the magnitude is the hypotenuse of a triangle with sides equal to vx and vy, as follows:

v =\sqrt{(16.6m/s)^{2}+ (-17.2m/s)^{2}} = 23.9 m/s

v = 23.9 m/s

c) The direction of the vector (below the horizontal) can be found as the angle which tangent is given by the quotient between vy and vx, as follows:

tg θ =\frac{-17.2}{16.6} =-1.036

⇒ θ = tg⁻¹ (-1.036) = 46º below horizontal.

6 0
3 years ago
A quarterback throws a football toward a receiver with an initial speed of 20 m/s at an angle of 30∘ above the horizontal. At th
lana66690 [7]

Answer:

a) In order to catch the ball at the level at which it is thrown in the direction of motion.

b)Speed of the receiver will be 7.52m/s

Explanation:

Calculating range,R= Vo^2Sin2theta/g

R= (20^2×Sin(2×30)/9.8 = 35.35m

Let receiver be(R-20) = 35.35-20= 15.35m

The horizontal component of the ball is:

Vox= Vocostheta= 20× cos30°

Vox= 17.32m/s

Time taken to coverR=35.35m with 17.32m/s will be:

t=R/Vox= 35.35/17.32

t= 2.04seconds

b)Speed required to cover 15.35m at 2.04seconds

Vxreciever= d/t = 15.35/2.04 = 7.52m/s

7 0
3 years ago
Read 2 more answers
Other questions:
  • Scientists can estimate the age of a planetary surface by counting __________. scientists can estimate the age of a planetary su
    15·1 answer
  • What's the difference between asexual reproduction and sexual reproduction?!?!
    9·2 answers
  • Is it possible to have a net torque when all of the forces sum to zero? Explain.
    8·1 answer
  • An example of an action and reaction is sitting on a chair. Your body pushes down on the chair because of the force of _ , and t
    12·1 answer
  • What is a phone message?
    15·2 answers
  • A truck driver is broadcasting at a frequency of 27.075 MHz with a CB (citizen's band) radio. Determine the wavelength of the el
    15·1 answer
  • The formula d = rt gives the distance d traveled in time t at rate r. A train travels 163.2 miles in 2.4 hours, traveling at a c
    13·1 answer
  • What does KE mean? *100 pts*
    12·2 answers
  • 14. The average speed of a car was 60 m/s by the time it reached the finish line. The car moved in a straight line and traveled
    8·1 answer
  • the ability of torricelli's hypothesis about atmospheric pressure to suggest the design of the barometer is an illustration of:
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!