The energy stored in the membrane is 
Explanation:
The capacitance of a parallel-plate capacitor is given by

where
k is the dielectric constant of the material
is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
For the membrane in this problem, we have
k = 4.6


Substituting, we find its capacitance:

Now we can find the energy stored: for a capacitor, it is given by

where
is the capacitance
is the potential difference
Substituting,

Learn more about capacitors:
brainly.com/question/10427437
brainly.com/question/8892837
brainly.com/question/9617400
#LearnwithBrainly
"<span>a layer in the earth's stratosphere at an altitude of about 6.2
miles (10 km) containing a high concentration of ozone, which absorbs
most of the ultraviolet radiation reaching the earth from the sun."
Hope this helps!
</span>
The equation for the de Broglie wavelength is:
<span>λ = (h/mv) √[1-(v²/c²)], </span>
<span>where h is Plank's Constant, m is the rest mass, v is velocity, and c is the velocity of light in vacuum. However, if c>>v (and it is, in this case) then the expression under the radical sign approaches 1, and the equation simplifies to: </span>
<span>λ = h/mv. </span>
<span>Substituting, (remember to convert the mass to kg, since 1 J = 1 kg·m²/s²): </span>
<span>λ = (6.63x10^-34 J·s) / (0.0459 kg) (72.0 m/s) = 2.00x10^-34 m.</span>
<em>Another key factor that determines a star's colour is its temperature. As stars become hotter, the overall radiated energy increases, and the peak of the curve changes to shorter wavelengths. To put it another way, when a star heats up, the light it produces moves toward the blue end of the spectrum.</em>
Answer:
This is the answer: The speed of a proton is about 5.0 × 10⁵ m/s
Explanation:
Because of the speeds of protons! :D